North Slope, Alaska, Snow-Course, Lake Chemistry and Physical Data: March 2011

Crea Creek, photo by J. Derry, March 2011.

by Jeff Derry, Kristie Hilton, and Michael Lilly

August 2012 Arctic Transportation Networks Project Report GWS.TR.12.08

North Slope, Alaska, Snow-Course, Lake Chemistry and Physical Data: March 2011

by

Jeff Derry¹, Kristie Hilton¹, and Michael Lilly¹

A report on research sponsored by:

- U.S. Department of Energy
- National Energy Technology Laboratory
- Alaska Department of Natural Resources
- ConocoPhillips Alaska, Inc.
- Bureau of Land Management
- Geo-Watersheds Scientific

August 2012 Arctic Transportation Networks Project Report Number GWS.TR.12.08

¹Geo-Watersheds Scientific, Fairbanks, AK

Recommended Citation:

Derry, J., Hilton, K., and Lilly, M. 2012. North Slope, Alaska, Snow-Course, Lake Chemistry and Physical Data: March 2011. Geo-Watersheds Scientific, Report GWS.TR.12.08. Fairbanks, Alaska. 11 pp (plus appendices).

Fairbanks, Alaska August 2012

For additional information write to:

Geo-Watersheds Scientific PO Box 81538 Fairbanks, Alaska 99708 mlilly@gwscientific.com

TABLE OF CONTENTS

TABLE OF CONTENTS	v
LIST OF FIGURES	v
LIST OF TABLES	v
DISCLAIMER	vii
CONVERSION FACTORS, UNITS, WATER QUALITY UNITS, VERTICAL AND	
HORIZONTAL DATUM, ABBREVIATIONS AND SYMBOLS	viii
PROJECT COOPERATORS	xii
ACKNOWLEDGEMENTS	xii
INTRODUCTION	2
TRIP OBJECTIVES	3
PROCEDURES	5
SELECTED RESULTS	6
SUMMARY	11
REFERENCES	11

LIST OF FIGURES

Figure 1.	Map of routes taken to lake and beaded stream sampling sites in NPR-A
Figure 2.	Plot of water depth and dissolved oxygen concentrations at sampled sites 10
Figure 3.	Plot of dissolved oxygen and conductivity concentrations at sampled sites

LIST OF TABLES

Table 1. Hach calibration quality control criteria.	6
Table 2. Snow depth, density, and snow water equivalent for sites sampled in March	7
Table 3. Average ice thickness and standard deviation of ice thickness at lakes sampled. Lake	es
where only one ice thickness was measurement are in italics.	8
Table 4. Water depth, median dissolved oxygen and median conductivity	9

LIST OF APPENDICES

APPENDIX A.	WATER QUALITY FORMS	A
APPENDIX B.	SNOW SURVEY FORMS	В

APPENDIX C. LAKE HYDROLOGICAL MEASUREMENTS	C
APPENDIX D. WATER QUALITY METER CALIBRATION FORMS	D

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The contents of this report reflect the views of the authors, who are responsible for the accuracy of the data presented herein. The contents of the report do not necessarily reflect the views of policies of DOE or any local sponsor. This work does not constitute a standard, specification, or regulation.

CONVERSION FACTORS, UNITS, WATER QUALITY UNITS, VERTICAL AND HORIZONTAL DATUM, ABBREVIATIONS AND SYMBOLS

Conversion Factors

Multiply	By	To obtain
	<u>Length</u>	
inch (in)	25.4	millimeter (mm)
inch (in)	2.54	centimeter (cm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Area	
Acre	43560	square feet (ft ²)
Acre	0.4047	hectare (ha)
square foot (ft ²)	3.587×10^{-8}	square mile (mi ²)
square mile (mi ²)	2.590	square kilometer (km ²)
	Volume	
gallon (gal)	3.785	liter (l)
gallon (gal)	3785	milliliter (ml)
cubic foot (ft^3)	23.317	liter (l)
acre-ft (ac-ft)	1233	cubic meter (m ³)
	Velocity and Discharge	
foot per day (ft/d)	0.3048	meter per day (m/d)
square foot per day (ft ² /d)	0.0929	square meter per day (m ² /d)
cubic foot per second (ft^3/s)	0.02832	cubic meter per second (m ³ /sec)
	Hydraulic Conductivity	
foot per day (ft/d)	0.3048	meter per day (m/d)
foot per day (ft/d)	0.00035	centimeter per second (cm/sec)
meter per day (m/d)	0.00115	centimeter per second (cm/sec)
	Hydraulic Gradient	
foot per foot (ft/ft)	5280	foot per mile (ft/mi)
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km)
	Pressure	
pound per square inch (lb/in^2)	6.895	kilopascal (kPa)

Units

For the purposes of this report, both English and Metric (SI) units were employed. Regulations related to tundra travel and water use on Alaska's North Slope apply combinations of both English and SI units. The choice of "primary" units employed depended on common reporting standards for a particular property or parameter measured. Whenever possible, the approximate value in the "secondary" units was also provided in parentheses. Thus, for instance, snow depth was reported in inches (in) followed by the value in centimeters (cm) in parentheses.

Physical and Chemical Water-Quality Units:

Temperature:

Water and air temperature are given in degrees Celsius (°C) and in degrees Fahrenheit (°F). Degrees Celsius can be converted to degrees Fahrenheit by use of the following equation:

 $^{\circ}F = 1.8(^{\circ}C) + 32$

Snow Water Equivalent (SWE):

Water content of a column of snow is determined by knowing the depth of the snowpack and density.

$$SWE = d_s * \rho_s / p_w$$

where:

 $d_s =$ snow depth $\rho_s =$ snow density $p_w =$ density of water.

Electrical Conductance (Actual Conductivity and Specific Conductance):

In this report conductivity of water is expressed as actual conductivity (AC) in microSiemens per centimeter (μ S/cm). This unit is equivalent to micromhos per centimeter. Conductivity can also be expressed as specific conductance at 25°C (SC25) in which the actual conductivity (μ S/cm) is temperature corrected. To convert AC to SC25 the following equation can be used:

Error! Bookmark not defined.
$$SC25 = \frac{AC}{1 + r(T - 25)}$$

where:

 $SC25 = specific conductance at 25^{\circ}C, in \mu S/cm$

 $AC = actual \ conductivity, \ in \ \mu S/cm$

- r = temperature correction coefficient for the sample, in ^oC
- T = temperature of the sample, in ^oC

Milligrams per Liter (mg/l) or Micrograms per Liter (µg/l):

Milligrams per liter is a unit of measurement indicating the concentration of chemical constituents in solution as weight (milligrams) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter. For concentrations less than 7,000 mg/l, the numerical value reported in mg/L is equivalent to the concentration in parts per million (ppm).

Millivolt (mV):

A unit of electromotive force equal to one thousandth of a volt.

Vertical Datum:

"Sea level" in the following report refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929), a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called *Sea Level Datum of 1929*.

Horizontal Datum:

The horizontal datum for all locations in this report is the North American Datum of 1983 or North American Datum of 1927. The datum used for each data set is reported on field forms located in the appendix.

Abbreviations, Acronyms, and Symbols

AC	Actual conductivity
ADOT&PF	Alaska Department of Transportation and Public Facilities
ADNR	Alaska Department of Natural Resources
ASTM	American Society for Testing and Materials
atm	Atmospheres
ATN	Arctic Transportation Networks
С	Celsius (°C)
cm	Centimeters
DO	Dissolved oxygen
DVM	Digital voltage multi-meter
F	Fahrenheit (°F)
ft	Feet
GWS	Geo-Watersheds Scientific
in	Inches
kg	Kilograms
km^2	Square kilometers
kPa	Kilopascal
lb/in ²	Pounds per square inch
m	Meters
mg/l	Milligrams per liter
µg/l	Micrograms per liter
mi ²	Square miles
mm	Millimeters
μS/cm	Microsiemens per centimeter
mV	Millivolt
NGVD	National Geodetic Vertical Datum
NRCS	Natural Resources Conservation Service
NWIS	National Water Information System
ORP	Oxygen-reduction potential
ppm	Parts per million
QA	Quality assurance
QC	Quality control
Sag	Sagavanirktok River
SC25	Specific conductance at 25°C
SWE	Snow water equivalent
UAF	University of Alaska Fairbanks
USACE	U.S. Army Corps of Engineers, Alaska District
USGS	U.S. Geological Survey
WERC	Water and Environmental Research Center
WWW	World Wide Web
YSI	Yellow Springs Instruments

PROJECT COOPERATORS

The Arctic Transportation Network project covers a large area of the North Slope and benefits from a number of positive partnerships, all contributing to the overall project objectives.

- > U.S. Department of Energy, National Energy Technology Laboratory (NETL)
- ConocoPhillips Alaska, Inc. (CPA)
- Bureau of Land Management (BLM)
- Alaska Department of Natural Resources (ADNR)
- North Slope Borough (NSB)
- National Weather Service (NWS)
- Geo-Watersheds Scientific (GWS)
- University of Alaska-Fairbanks (UAF)
- Idaho National Laboratory (INL)

ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S. Department of Energy (National Energy and Technology Laboratory) under Award Number DE-FE0001240. Field coordination, logistics and data support were provided by ConocoPhillips Alaska. Additional support was provided by other project cooperators, North Slope Borough, Bureau of Land Management, National Weather Service, and Geo-Watersheds Scientific, in the form of financial and in-kind match. Alaska Department of Natural Resources provided data and supporting information for snow survey sites in the study area.

North Slope, Alaska, Snow-Course, Lake Chemistry and Physical Data: March 2011

INTRODUCTION

Geo-Watersheds Scientific (GWS), University of Alaska Fairbanks (UAF), and Idaho National Laboratory (INL), together with project cooperators, initiated a study in October 2009 to collect field data for the development of management tools for various aspects of Arctic Transportation Networks (ATN). Some of the variables collected include data from meteorological and lake stations, such as snow depth, air and soil temperatures, unfrozen soil moisture, precipitation, wind and radiation data. Data are also collected at selected lakes and reservoirs. Lake data may include snow depth and density data, water-quality and water-level measurements, and general observations of watershed conditions.

Snow depth is considered an important variable by regulatory agencies, since tundra travel operations in the Coastal Tundra Area (Alaska state lands) can only commence once data stations report a snow depth of 6 in (15 cm) in the coastal plain management areas, or 9 in (23 cm) in the foothills management areas. Soil temperatures are also used to manage tundra travel on Alaska state lands. The soil temperature must reach 23° F (-5°C) at a depth of 12 in (30 cm) (Bader, 2004) to ensure frozen soil has adequate strength to meet tundra-travel management criteria. The direct relationship of soil strength to the temperature criteria has not been defined, though this criterion is considered conservative. Many meteorological factors determine when these conditions will be met. An established network of meteorological stations and increased manual snow measurements – both number of samples collected and number of sites visited – will improve the understanding of the timing and amount of snow and its spatial distribution and will assist in the development of predictive and management tools.

Ice thickness on lakes and reservoirs is another important measurement related to Arctic transportation networks. Adequate ice thickness must exist before safe travel over ungrounded ice (not frozen to bottom of lake or reservoir) can be conducted. In most cases, for lakes over 7 feet (2.1 m) deep, an end-of-season ice thickness of 7 ft (2.1 m) is assumed for the North Slope.

2

This is a conservative seasonal ice thickness that is rarely measured, but has provided a safe management approach in lack of supporting data for seasonal ice thicknesses over the North Slope. Ice thickness data collected by the ATN project and others will be used to help develop better management approaches associated with water use and North Slope lakes and reservoirs.

TRIP OBJECTIVES

The March field effort was a collaborative effort with BLM and UAF personnel with the objectives primarily focused on visiting lakes and beaded streams in the NPR-A (Figure 1). At each location snow-courses were conducted both on the lake surface and on the tundra surface near the lake. Water quality measurements, consisting of dissolved oxygen, temperature, and conductivity, were collected at the center of each lake visited. Lake ice measurements (freeboard, ice thickness, water depth) were collected at the center of each lake and in the four cardinal directions of each lake. Water level surveys were completed at lakes L9817, M9925, L9820, L9819, L9323, L9824, L9312, and L9322. A number of beaded stream cross sections were visited and water quality and physical information was collected. Meteorological station operations were completed and the stream camera station was brought online at L9817. Images were collected and batteries were replaced at non-telemetry cameras. The list below summarizes the primary trip objectives:

- Snow measurements
- Lake ice measurements and observations
- Lake chemistry profile measurements
- Lake elevation surveys
- Beaded stream observations and chemistry
- Weather station/camera operations
- Tundra travel network observations

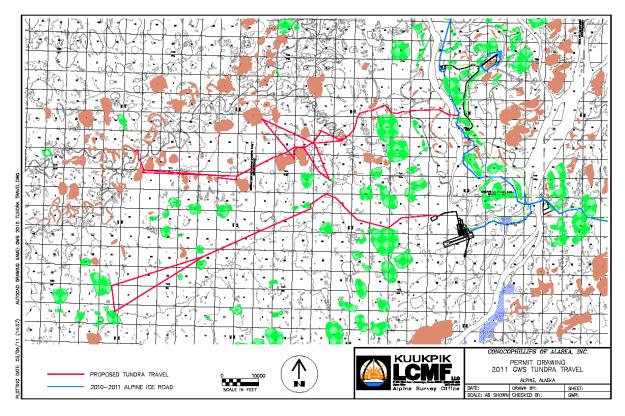


Figure 1. Map of routes taken to lake and beaded stream sampling sites in NPR-A.

A workplan was published prior to the March field campaign containing a site-by-site list of objectives (Derry et al. 2011). Project accomplishments include the following:

- 1. Toolik Lake
 - Conduct snow survey on Toolik Lake
 - Measure lake-ice parameters on Toolik Lake
- 2. NPRA NPRA sites
 - ▶ L9811, snow survey on lake and on tundra (North edge), lake chemistry profile
 - L9817, snow survey on lake, snow survey on tundra, lake chemistry profile at standard location, check weather station operations, elevation surveys, new battery for camera station, get it in operation
 - R0066– Snow survey on lake and on tundra, lake ice measurements, lake chemistry profile
 - R0061– Snow survey on lake and on tundra, lake ice measurements, lake chemistry profile
 - Bills Creek camera maintenance
 - Bills Creek Intersection camera maintenance
 - L9822 Snow survey on lake and on tundra, lake ice measurements, lake chemistry profile

- M9925 Snow survey on lake and on tundra, look for lake ice not frozen to bottom, lake chemistry, new batteries and memory card in camera, determine lake levels going into freeze-up, install marker stakes in view of camera
- M9913 Snow surveys on lake and on tundra, lake chemistry profile, ice measurements
- R0079/M0020 Snow survey on lake and on tundra, lake ice measurements, lake chemistry profile
- M9910 Snow survey on lake and on tundra, lake ice measurements, lake chemistry profile
- Crea Creek Upper Gulch snow, upland snow survey and snowmelt gage install, bead ice thickness, depth, talik depth, set channel sensors
- Crea Creek Middle Gulch snow, upland snow survey and snowmelt gage install, bead ice thickness, depth, talik depth, set channel sensors
- Crea Creek Lower Gulch snow, upland snow survey and snowmelt gage install, bead ice thickness, depth, talik depth, set channel sensors
- L9820 Snow survey on lake and on tundra, look for lake ice not frozen to bottom, lake chemistry, determine lake levels going into freeze-up
- L9819 Snow survey on lake and on tundra, look for lake ice not frozen to bottom, lake chemistry, new batteries and memory card in camera, determine lake levels going into freeze-up, install marker stakes in view of camera
- L9824 Snow survey on lake and on tundra, lake ice measurements, lake chemistry profile, determine lake levels going into freeze-up
- MC7916 Snow survey on lake and on tundra, lake ice measurements, lake chemistry profile
- L9312 Snow survey on lake and on tundra, lake ice measurements, lake chemistry profile, determine lake levels going into freeze-up, install marker stakes in view of camera
- L9322 Snow survey on lake and on tundra, lake ice measurements, lake chemistry profile, determine lake levels going into freeze-up, install marker stakes in view of camera
- L9321 Snow survey on lake and on tundra, lake ice measurements, lake chemistry profile
- L9323 Snow survey on lake and on tundra, lake ice measurements, lake chemistry profile, determine lake levels going into freeze-up

PROCEDURES

ATN's standard snow course procedures include snow-depth measurements conducted in "L" shaped patterns on lake surfaces and/or tundra surfaces at predetermined locations according to ATN snow measurement methods (Derry et al. 2009). Snow-depth measurements were taken with a T-handle probe approximately every 3.3 ft (1 m) for 82 ft (25 m), then turning 90 degrees, and continuing for another 82 ft (25 m). Snow samples were also collected for density measurements with an Adirondack snow sampler. Five densities were collected at each location and averaged to establish a representative density.

At lakes and beaded streams, holes were drilled through the ice with an electric drill using a 5 cm (2 in) bit or 10 in diameter auger. Water depth (lake bottom to water surface), freeboard (water surface to top of ice), ice thickness (bottom of ice to top of ice), and snow depth (top of ice to top of snow, measured at the hole where snow was cleared to drill) were measured. Water depth was measured with a flexible tape fitted with a weight at the end. Freeboard and ice thickness were measured with a folding tape. Snow depth was measured with the same T-handle probe that was used for snow courses.

Water-quality parameters were obtained using a Hach RLDO and a Hach Rcond at multiple depths throughout the water column. The calibration of each parameter was checked before and after each day of sampling using the criteria in Table 1.

Parameter Standards used		Acceptable deviation from calibration standard value
pH	4.01, 10.01	± 0.2
Conductivity	3900 (µs/cm)	within 10%
100% DO	100 % saturated	within 10%
0% DO	0 % saturated solution	within 0.3 mg/L

Table 1. Hach calibration quality control criteria.

SELECTED RESULTS

The March field effort continued snow-data collection for regional snow distribution analysis and lake ice thickness modeling. Snow-course measurements were conducted at thirty different locations during the March trip (Table 2). In addition, three snow depth transects were done across the stream channel at Crea Creek. Snow data collected for each of the sampling sites visited can be found in Appendix B.

	Aver		Minin		Maxir		Stan		Average	Snow	
	Snow	Depth	Snow	Depth	Snow	Depth	Devia	ation	Density	Equiv	alent
	cm	in	cm	in	cm	in	cm	in	g/cm ³	cm	in
L9312 - Lake (Raft B)	18.3	7.2	8.0	3.1	41.0	16.1	7.0	2.7	0.34	6.3	2.5
L9312 - Tundra	46.6	18.3	20.0	7.9	78.0	30.7	12.2	4.8	0.30	13.8	5.4
L9321 - Lake	20.2	8.0	12.0	4.7	34.0	13.4	5.3	2.1	0.32	6.4	2.5
L9321 - Tundra	25.0	9.8	16.0	6.3	37.0	14.6	4.4	1.7	0.33	8.1	3.2
L9322 - Lake	21.5	8.5	14.0	5.5	30.0	11.8	4.2	1.7	0.34	7.3	2.9
L9322 - Tundra	38.4	15.1	29.0	11.4	50.0	19.7	5.7	2.3	0.28	10.7	4.2
L9323 - Lake	16.4	6.4	8.0	3.1	30.0	11.8	6.1	2.4	0.33	5.3	2.1
L9811 - Lake	34.0	13.4	22.0	8.7	48.0	18.9	7.0	2.8	0.33	11.2	4.4
L9811 - Tundra	34.9	13.7	20.0	7.9	62.0	24.4	9.9	3.9	0.23	8.1	3.2
L9817 - Lake	22.2	8.7	8.0	3.1	41.0	16.1	7.0	2.8	0.32	7.1	2.8
L9817 - Tundra	36.1	14.2	21.0	8.3	56.0	22.0	8.5	3.3	0.20	7.2	2.8
L9819 - Lake	25.3	9.9	14.0	5.5	46.0	18.1	8.3	3.3	0.33	8.4	3.3
L9819 - Tundra	45.9	18.1	29.0	11.4	69.0	27.2	10.7	4.2	0.25	11.6	4.5
L9822 - Lake	10.3	4.1	6.0	2.4	16.0	6.3	2.3	0.9	0.28	2.9	1.2
L9822 - Tundra	43.2	17.0	25.0	9.8	61.0	24.0	8.0	3.1	0.28	12.0	4.7
M0020 - Lake	15.4	6.1	9.0	3.5	22.0	8.7	3.3	1.3	0.28	4.3	1.7
M0020 - Tundra	41.3	16.3	16.0	6.3	67.0	26.4	11.6	4.6	0.24	10.0	3.9
M9910 - Lake	28.4	11.2	19.0	7.5	39.0	15.4	4.7	1.9	0.31	8.8	3.5
M9910 - Tundra	43.9	17.3	27.0	10.6	62.0	24.4	8.4	3.3	0.24	10.7	4.2
M9925- Lake	23.7	9.3	14.0	5.5	33.0	13.0	5.5	2.2	0.35	8.3	3.3
L9925 - Tundra	39.7	15.6	29.0	11.4	54.0	21.3	5.9	2.3	0.23	9.2	3.6
MC7916 - Lake	22.7	8.9	16.0	6.3	36.0	14.2	3.3	1.3	0.35	8.0	3.1
MC7916 - Tundra	47.9	18.9	36.0	14.2	59.0	23.2	6.2	2.4	0.28	13.2	5.2
R0061 - Lake	26.1	10.3	13.0	5.1	46.0	18.1	9.7	3.8	0.32	8.4	3.3
R0061 - Tundra	38.8	15.3	27.0	10.6	61.0	24.0	5.9	2.3	0.19	7.2	2.8
R0066 - Lake	25.6	10.1	14.0	5.5	39.0	15.4	5.6	2.2	0.28	7.2	2.8
R0066 - Tundra	48.4	19.1	30.0	11.8	81.0	31.9	9.0	3.5	0.27	12.9	5.1
SWE-DTLB1 - Tundra	42.0	16.5	24.0	9.4	54.0	21.3	5.3	2.1	0.31	12.9	5.1
SWE - 1 Tundra	44.0	17.3	26.0	10.2	58.0	22.8	6.2	2.4	0.27	11.8	4.7
Toolik - Lake	26.3	10.4	13.0	5.1	44.0	17.3	8.1	3.2	0.27	7.0	2.8
Tundra Average	41.1	16.2	25.0	9.8	60.6	23.9	7.9	3.1	0.26	10.6	4.2
Lake Average	22.7	8.9	13.0	5.1	36.0	14.2	5.8	2.3	0.31	7.2	2.8
Overall Average	31.8	12.5	18.8	7.4	48.5	19.1	6.8	2.7	0.29	8.9	3.5

Table 2. Snow depth, density, and snow water equivalent for sites sampled in March.

٦

Less snow accumulation was measured on lake surfaces compared to tundra surfaces by nearly half, 22.7 cm (8.9 in) on the lakes compared with 41.1 cm (16.2 in) on the tundra. Greater snow density was measured on lakes compared to tundra surfaces, 0.31 g/cm³ compared to 0.26 g/cm³. These results are expected and are in-line with data that has been collected over previous seasons. The increased surface roughness of tundra compared to lake ice tends to trap and keep a certain amount of snow starting with the first snow events of the season. Smoother lake surfaces, on the other hand, experience greater wind erosion of the snowpack. Increased densification of the snowpack on lake surfaces is due to greater susceptibility to wind compaction as well as

comparatively increased snow metamorphism, due to greater temperature (vapor) gradients, on tundra surfaces compared to the lake surface snowpack. The resulting snow water equivalent on tundra is an average 10.6 cm (4.2 in) with lake surfaces being a third less at an average of 7.2 cm (2.8 in). The greater density of snow on lakes helps make-up for receiving almost half the snow accumulation, but not entirely. The overall average of SWE is 8.9 cm (3.5 in).

At most lakes visited, ice thickness was measured at the lake center and in four directions (north, south, east, and west) around the lake. The average ice thickness of all the lakes sampled was 3.72 ft (1.13 m) with a standard deviation of 0.30 ft (0.09 m). There is approximately a one foot difference between the average thinnest (3.24 ft/1.0 m) and average thickest (4.29 ft/1.31 m) lake ice (Table 3). Water level and ice thickness data collected for each of the sampling sites visited can be found in Appendix C.

	Avera	ge Ice	Stan	dard
Location	Thick	iness	Devi	ation
	(ft)	(m)	(ft)	(m)
L9811	3.93	1.20	0.56	0.17
L9817	3.47	1.06	0.30	0.09
L9819	3.92	1.19	0.29	0.09
L9822	4.29	1.31	0.11	0.03
M0022	3.42	1.04	0.44	0.14
M9910	3.32	1.01	0.35	0.11
MC7916	3.96	1.21	0.20	0.06
R0061	3.49	1.06	0.25	0.08
R0066	3.52	1.08	0.16	0.05
L9322	4.04	1.23		
L9323	4.20	1.28		
L9820	3.58	1.09		
L9824	3.24	0.99		

 Table 3. Average ice thickness and standard deviation of ice thickness at lakes sampled. Lakes where only one ice thickness was measurement are in italics.

L9811, located near Nuiqsut in NPR-A, was the shallowest of the sites visited (6.0 ft) and had the lowest recorded median DO concentration (average 1.72 mg/L) and the second highest median conductivity reading (average 587.5 μ S/cm) of all of the sites. L9817, also located near

Nuiqsut in NPRA, was of average depth (7.0 ft) with the fourth lowest DO concentration (4.03 mg/L) and the highest conductivity reading (average 913.0 μ S/cm) of all of the sites. L9323, located near the Alpine facility, was the deepest sampling location (11.0 ft) with the fourth highest DO concentration (10.10 mg/L) and the second lowest median conductivity reading recorded (195.0 μ S/cm). L9312, also located near the Alpine facility, was relatively deep (10.0 ft) and had the highest median DO concentration (13.54 mg/L) and the third lowest conductivity measurement recorded (213.0 μ S/cm) of all the sites. Water depth, mean DO concentration, and median conductivity for sites samples are presented in Table 4. Additional data and water quality field forms can be found in Appendix A.

				Median
	Water		Median DO	Actual
Location	Dep	oth	Concentration	Conductivity
	ft	m	mg/l	mS/cm
L9312	10.0	3.0	13.54	213.0
L9321	10.0	3.0	10.72	229.5
L9322	9.0	2.7	11.92	229.5
L9323	11.0	3.4	10.10	195.0
L9811-Center	6.0	1.8	1.43	624.0
L9811: Mid-point	6.0	1.8	2.00	551.0
L9817	8.0	2.4	3.88	909.0
L9817: Mid-point	6.0	1.8	4.18	917.0
L9819: Mid-point	6.3	1.9	5.99	442.0
L9822	8.0	2.4	7.84	na
L9824	9.0	2.7	1.87	178.5
MC7916: Mid-point	7.0	2.1	7.85	325.0
R0061: Mid-point	6.5	2.0	7.04	425.5
R0066: Mid-point	10.0	3.0	3.77	263.0

Table 4. Water depth, median dissolved oxygen and median conductivity.

Figure 2 shows the relationship between dissolved oxygen concentrations and depth at sampled sites, while Figure 3 shows the relationship between conductivity and dissolved oxygen concentrations.

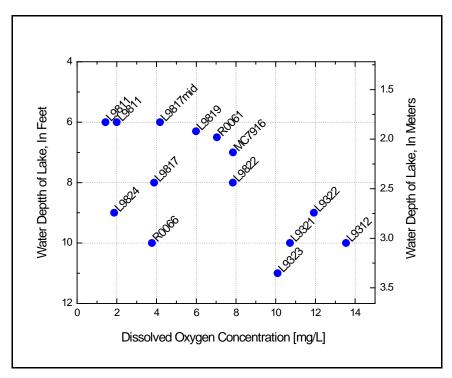


Figure 2. Plot of water depth and dissolved oxygen concentrations at sampled sites.

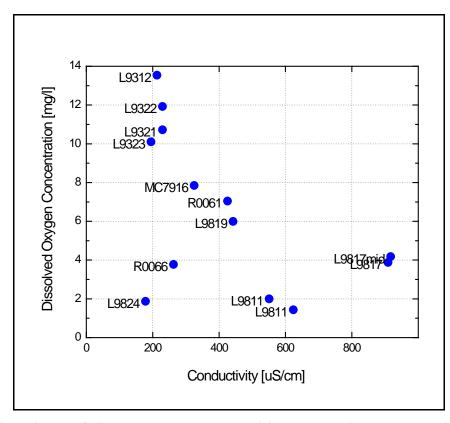


Figure 3. Plot of dissolved oxygen and conductivity concentrations at sampled sites.

SUMMARY

The March 2011 field trip was a collaborative effort which provided data on snow depth and density, water elevation, water depth, freeboard, ice thickness, DO, conductivity, and water temperature. Station maintenance was conducted on the L9817 meteorological station and the L9817 camera station was made operational and is currently reporting images. At a number of sites, non-telemetry cameras were visited where images were downloaded and batteries were replaced. The collection of snow and lake information related to Arctic transportation networks will help the development of regulatory and user management tools, forecast modeling tools, and optimum field sampling methods. These tools will help manage increasing resource development and variation of natural conditions in extreme Arctic climates.

REFERENCES

- Alaska Department of Natural Resources. 2009. Winter Off-road Travel Conditions Monitoring Sampling Protocol. Alaska Department of Natural Resources, Division of Mining Land and Water. 4 pages.
- Bader, H.R. 2004. Tundra Travel Research Project: Validation Study and Management Recommendations. Betula Consulting. 20 pages.
- Derry, J., Lilly, M., Schultz, G., Cherry, J., 2009. Snow Data Collection Methods Related to Tundra Travel, North Slope, Alaska. December 2009, Geo-Watersheds Scientific, Report GWS.TR.09.05, Fairbanks, Alaska, 12 pp (plus appendices).
- Derry, J., Toniolo, H., Whitman M., Arp C., and Lilly, M. 2011. A Workplan for Snow Data Collection, Lake and Stream Observations and Meteorological Station Maintenance: March 2011. Geo-Watersheds Scientific, Fairbanks, Alaska. 17 pages.

APPENDIX A. WATER QUALITY FORMS

The following forms report the water quality information obtained during field sampling.

Project ID:	rtation Networks	Site Location/Lake ID:	Crea	Creek- Large 3	
Sample Purpose:	Lake Water Qua	ality	Date: 3/15/11	Time:	14:35
FIELD MEASUREMENTS					
GPS Coord. Northing:	N70 16.360	Easting: W151 20.472	Datum: NAD83		
Measurements By:	M. Whitman	Time: 14:35			
Water Depth (ft):	7.55	Ice Thickness (ft): 2.79			
Freeboard (ft):	nr	Snow Depth (ft): nr			
Elev. (BPMSL +/02):	na	Survey By: na	Date: na	Time:	na
Water Sampling By:	na	Sample Depths BWS (ft): na	Date: na	Time:	na

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Met	er Make/N	lodel	Sei	rial No.	Pre-Sampling QAQC Check		Post-Sampling QAQC Check	
Dissolved Oxygen, Temp	BLM	F	lach RLD	0	10034	12542015	Pas	Pass		Pass
Conductivity, Temp	BLM	F	lach Rcor	nd	100352583019		Pass		Pass	
Parameters			Field Measurements							
Time:										
Depth BWS (ft):	3	4	5	6	7					
Temp (°C):	0.4	0.2	0.1	0.1	0.0					
pH:										
Barometeric (mmHg):										
Pressure (kPa):										
Specific Conductivity (ųS/cm):	601	626	641	644	675					
RDO (ppm): (mg/L)	0.35	0.22	0.16	0.13	0.10					
Turbidity (NTU):										
ORP										

FIELD TES	FIELD TESTING OF WATER SAMPLES (if small probe is used)									
Probe:										
Depth (ft)										
Depth (ft) Temp (°C)										
pН										
Eh										

Parameter	Depth E	3WS (ft):_		Depth	BWS (ft)	:	Depth	BWS (ft):		Method
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	
Oxygen (mg/L)										Hach spec 0.3-15 mg/L
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N
Ammonia/ Iron dilution										
Remarks:										

Field-Form Filled Out By:	Deana Piedra	Date:	4/1/11
QAQC Check By:	K. Hilton	Date:	4/7/11

Project ID:	Arctic Transpo	rtation Networks	Site Location/Lake ID:		L9312
Sample Purpose:	Lake Water Qu	ality	Date: 3/17/11	Time:	nr
FIELD MEASUREMENTS					
GPS Coord. Northing:	N 70.33325	Easting: W 150.94864	Datum: NAD83		
Measurements By:	C. Arp	Time: na			
Water Depth (ft):	10.47	Ice Thickness (ft): nr			
Freeboard (ft):	nr	Snow Depth (ft): nr			
Elev. (BPMSL +/02):	na	Survey By: na	Date: na	Time:	na
Water Sampling By:	na	Sample Depths BWS (ft): 1 na	Date: na	Time:	na

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Mete	er Make/N	lodel	Seria	al No.	Pre-Sampling QAQC Check			Post-Sampling QAQC Check
Dissolved Oxygen, Temp	BLM	F	lach RLD	0	100342	542015	Pass			Pass
Conductivity, Temp	BLM	F	lach Rcor	nd	100352	100352583019 Pass			Pass	
Parameters		Field Measurements							-	-
Time:										
Depth BWS (ft):	4	5	6	7	8	9	10			
Temp (°C):	1.5	0.9	1.1	1.4	1.8	2.3	2.4			
RDO (ppm): (mg/L)	13.54	13.95	13.65	13.59	12.87	8.89	4.10			
pH:										
Barometeric (mmHg):										
Pressure (kPa):										
Conductivity (ųS/cm):	134	139	139	137	136	135	149			
Temp (°C):	2.7	1.2	1.1	1.3	1.6	1.9	2.2			
Turbidity (NTU):										
ORP										

FIELD TESTING OF WATER SAMPLES (if small probe is used)									
Probe:									
Depth (ft)									
Depth (ft) Temp (°C)									
pН									
Eh									

NORTH SLOPE LAB CHEMISTRY ANALYSIS

h BWS (ft):		Method	
rep 2	rep 3		
		Hach spec 0.3-15 mg/L	
		Digital titrator 10-4000 mg/L as CaCO3	
		Hach spec 0.02-3.00 mg/L	
		Hach spec 0.02-3.00 mg/L	
		0.01-0.50 mg/L NH3-N	

Remarks: 2 temp readings, one from DO meter and the other from conductivity meter

Field-Form Filled Out By:	Deana Piedra	Date:	4/7/11
QAQC Check By:	Kristie Hilton	Date:	4/7/11

Project ID:	Arctic Trans	portation Networks	Site Location/	Lake ID:	L9321		
Sample Purpose:	Lake Water G	Quality	Date:	3/17/11	Time:		_
FIELD MEASUREMENTS							
GPS Coord. Northing:	nr	Easting: nr	Datum:	na			
Measurements By:	Arp	Time: nr					
Water Depth (ft):	9.78	Ice Thickness (ft): nr					
Freeboard (ft):	nr	Snow Depth (ft): nr					
Elev. (BPMSL +/02):	nr	Survey By: na	Date:	na	Time:	na	
Water Sampling By:	na	Sample Depths BWS (ft): na	Date:	na	Time:	na	

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Mete	er Make/N	lodel	Ser	al No.	Pre-Sampling QAQC Check		Post-Sampling QAQC Check
Dissolved Oxygen, Temp	BLM	F	lach RLD	0	10034	2592015	Pass		Pass
Conductivity, Temp	BLM	H	lach Rcor	ld	100352583019		Pass		Pass
Parameters		Field Measurements							
Time:									
Depth BWS (ft):	4	5	6	7	8	9	10		
Temp (°C):	4.9	1.3	1.3	1.5	1.6	1.7	2.0		
RDO (ppm): (mg/L)	10.16	11.98	12.03	11.54	10.72	7.23	0.18		
Barometeric (mmHg):									
Pressure (kPa):									
Specific Conductivity (ųS/cm):	196	213	217	215	213	209	295		
Temp (°C):	5.3	2.2	1.5	1.5	1.5	1.6	1.7		
Turbidity (NTU):									
ORP									

FIELD TES	FIELD TESTING OF WATER SAMPLES (if small probe is used)									
Probe:										
Depth (ft)										
Depth (ft) Temp (°C)										
pН										
Eh										

Parameter Depth BW		BWS (ft):_	3WS (ft):		Depth BWS (ft):			BWS (ft):		Method
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	
Oxygen (mg/L)										Hach spec 0.3-15 mg/L
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N
Ammonia/ Iron dilution										
Remarks [.]	_			-			-			-

Field-Form Filled Out By:	Deana Piedra	Date:	4/7/11
QAQC Check By:	Kristie Hilton	Date:	4/8/11

FUIII F-004a. Water Qu	anty rielu	-Sampling General					
Project ID:	Arctic Tran	sportation Networks	Site Location	/Lake ID:	L9322		
Sample Purpose:	Lake Water Quality		Date:	3/17/11	Time:	nr	
FIELD MEASUREMENTS							
GPS Coord. Northing:	nr	Easting: nr	Datum:	na			
Measurements By:	Lilly	Time: nr					
Water Depth (ft):	10.6	Ice Thickness (ft): 4.04					
Freeboard (ft):	nr	Snow Depth (ft): nr					
Elev. (BPMSL +/02):	nr	Survey By: na	Date:	na	Time:	na	
Water Sampling By:	na	Sample Depths BWS (ft): na	Date:	na	Time:	na	

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Mete	er Make/N	lodel	Ser	al No.	Pre-Sampling QAQC Check		st-Sampling AQC Check		
Dissolved Oxygen, Temp	BLM	F	lach RLD	С	10034	2592015	Pass		Pass		
Conductivity, Temp	BLM	H	lach Rcor	d	10035	2583019	Pass		Pass		
Parameters			Field Measurements								
Time:											
Depth BWS (ft):	4	5	6	7	8	9					
Temp (°C):	2.5	1.3	1.2	1.4	1.4	2.1					
RDO (ppm): (mg/L)	11.83	12.46	12.26	11.91	11.93	7.14					
Barometeric (mmHg):											
Pressure (kPa):											
Specific Conductivity (us/cm):	219	232	230	231	229	226					
Temp (°C):	3.4	1.1	1.1	1.1	1.1	1.1					
Turbidity (NTU):											
ORP											

FIELD TES	FIELD TESTING OF WATER SAMPLES (if small probe is used)										
Probe:											
Depth (ft)											
Temp (°C)											
pН											
Eh											

NORTH SLOPE LAB CHEMISTRY ANALYSIS

Parameter	Depth E	BWS (ft):_		Depth	BWS (ft)	:	Depth	BWS (ft):		Method
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	
Oxygen (mg/L)										Hach spec 0.3-15 mg/L
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N
Ammonia/ Iron dilution										
Remarks:				-			-			-

Field-Form Filled Out By:	Deana Piedra	Date:	4/7/11
QAQC Check By:	Kristie Hilton	Date:	4/8/11

FUIIII F-004a. Water Qt	Jailly Fleiu	-Sampling General				
Project ID:	Arctic Transportation Networks		Site Location/Lake ID:	L9323		
Sample Purpose:	Lake Water	Quality	Date: 3/17/11	Time:	nr	
FIELD MEASUREMENTS						
GPS Coord. Northing:	nr	Easting: nr	Datum: na			
Measurements By:	Arp	Time: na				
Water Depth (ft):	12.4	Ice Thickness (ft): 4.20				
Freeboard (ft):	4	Snow Depth (ft): nr				
Elev. (BPMSL +/02):	nr	Survey By: na	Date: na	Time:	na	
Water Sampling By:	na	Sample Depths BWS (ft): na	Date: na	Time:	na	

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Met	er Make/N	/lodel	Seria	al No.	Pre-Sampling QAQC Check		Post-Sampling QAQC Check
Dissolved Oxygen, Temp	BLM	F	lach RLD	0	100342	592015	Pa	ass	Pass
Conductivity, Temp	BLM	F	lach Rcor	nd	100352	583019	Pass		Pass
Parameters		Field Measurements							
Time:									
Depth BWS (ft):	4	5	6	7	8	9	10	11	
Temp (°C):	0.3	0.6	0.8	0.9	1.1	1.8	2.1	2.3	
RDO (ppm): (mg/L)	10.60	10.24	10.11	10.10	10.09	7.08	4.91	2.34	
Barometeric (mmHg):									
Pressure (kPa):									
Conductivity (ųS/cm):	179	185	189	188	201	203	202	202	
Temp (°C):	3.4	2.9	2.1	1.8	1.9	2.2	1.5	1.2	
pH:									
Turbidity (NTU):									
ORP									

FIELD TES	FIELD TESTING OF WATER SAMPLES (if small probe is used)									
Probe:										
Depth (ft)										
Depth (ft) Temp (°C)										
pН										
Eh										

NORTH SLOPE LAB CHEMISTRY ANALYSIS

Parameter	Depth E	Depth BWS (ft):			Depth BWS (ft):			BWS (ft):		Method
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	
Oxygen (mg/L)										Hach spec 0.3-15 mg/L
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N
Ammonia/ Iron dilution										
Domarka: 2 toma readings	and from D	0			فأبر نقوب أوجره					

Remarks: 2 temp readings, one from DO meter and the other from conductivity meter

Field-Form Filled Out By:	Deana Piedra	Date:	4/7/11
QAQC Check By:	Kristie Hilton	Date:	4/8/11

Project ID:	Arctic Transpor	tation Networks	Site Location/Lake ID:		L9811-CT
Sample Purpose:	Lake Water Qua	lity	Date: 3/14/11	Time:	11:45
FIELD MEASUREMENTS					
GPS Coord. Northing:	N70 12.4182	Easting: W151 10.4952	Datum: NAD83		
Measurements By:	M. Whitman	Time: 11:45			
Water Depth (ft):	6.36	Ice Thickness (ft): 3.90			
Freeboard (ft):	0.03	Snow Depth (ft): nr			
Elev. (BPMSL +/02):	na	Survey By: na	Date: na	Time:	na
Water Sampling By:	na	Sample Depths BWS (ft): na	Date: na	Time:	na

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Met	er Make/M	odel	Ser	ial No.	Pre-Sampling QAQC Check			Post-Sampling QAQC Check	
Dissolved Oxygen, Temp	BLM	ŀ	lach RLDC)	110552592009		Pass		Pass		
Conductivity, Temp	BLM	ŀ	lach Rcon	b	10035	100352583019		Pass		Pass	
Parameters		Field Measurements									
Time:											
Depth BWS (ft):	4	5	6								
Temp (°C):											
pH:											
Barometeric (mmHg):											
Pressure (kPa):											
Specific Conductivity (us/cm):	616	624	627								
RDO (ppm): (mg/L)	1.55	1.43	0.33								
Turbidity (NTU):											
ORP											

FIELD TES	FIELD TESTING OF WATER SAMPLES (if small probe is used)								
Probe:									
Depth (ft)									
Depth (ft) Temp (°C)									
pН									
Eh									

Parameter	Depth E	3WS (ft):_		Depth	BWS (ft)	:	Depth	BWS (ft):		Method
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	
Oxygen (mg/L)										Hach spec 0.3-15 mg/L
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N
Ammonia/ Iron dilution										
Remarks:	-			-			-			-

Field-Form Filled Out By:	Deana Piedra	Date:	4/1/11
QAQC Check By:	K. Hilton	Date:	4/7/11

Project ID:	Arctic Transpor	rtation Networks	Site Location/Lake ID:		L9811-Mid	
Sample Purpose:	Lake Water Qua	ality	Date: 3/14/11	Time:	10:52	
FIELD MEASUREMENTS						
GPS Coord. Northing:	N70 12.474	Easting: W151 10.125	Datum: NAD83			
Measurements By:	M. Whitman	Time: 10:52				
Water Depth (ft):	6.4	Ice Thickness (ft): 4.23				
Freeboard (ft):	nr	Snow Depth (ft): nr				
Elev. (BPMSL +/02):	na	Survey By: na	Date: na	Time:	na	
Water Sampling By:	na	Sample Depths BWS (ft): na	Date: na	Time:	na	

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Met	er Make/M	odel	Ser	ial No.		ampling Check		Post-Sampling QAQC Check
Dissolved Oxygen, Temp	BLM	F	lach RLDC)	100342592015		Pass		Pass	
Conductivity, Temp	BLM	ŀ	lach Rcono	ł	10035	2583019	Pass			Pass
Parameters			Field Measurements							
Time:										
Depth BWS (ft):	4	5	6							
Temp (°C):	0.7	1.3	1.4							
pH:										
Barometeric (mmHg):										
Pressure (kPa):										
Specific Conductivity (us/cm):	603	551	527							
RDO (ppm): (mg/L)	2.23	2.00	0.37							
Turbidity (NTU):										
ORP										

FIELD TES	FIELD TESTING OF WATER SAMPLES (if small probe is used)									
Probe:	Probe:									
Depth (ft)										
Depth (ft) Temp (°C)										
pН										
Eh										

Parameter	Depth E	3WS (ft):_		Depth	BWS (ft)	:	Depth	BWS (ft):		Method
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	
Oxygen (mg/L)										Hach spec 0.3-15 mg/L
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N
Ammonia/ Iron dilution										
Remarks:	-			-			-			-

Field-Form Filled Out By:	Deana Piedra	Date:	4/1/11
QAQC Check By:	K. Hilton	Date:	4/7/11

Project ID:	Arctic Transpor	tation Networks	Site Location/Lake ID:		L9817	
Sample Purpose:	Lake Water Qua	lity	Date: 3/14/11	Time:	13:17	
FIELD MEASUREMENTS						
GPS Coord. Northing:	N70 14.070	Easting: W151 20.121	Datum: NAD83			
Measurements By:	M. Whitman	Time: 13:17				
Water Depth (ft):	7.97	Ice Thickness (ft): 3.71				
Freeboard (ft):	0	Snow Depth (ft): nr				
Elev. (BPMSL +/02):	na	Survey By: na	Date: na	Time:	na	
Water Sampling By:	na	Sample Depths BWS (ft): na	Date: na	Time:	na	

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Met	er Make/N	lodel	Ser	ial No.		mpling Check		Post-Sampling QAQC Check
Dissolved Oxygen, Temp	BLM	F	lach RLD	0	10034	2592015	Pass			Pass
Conductivity, Temp	BLM	F	lach Rcor	nd	10035	2583019	Pa	ISS		Pass
Parameters										
Time:										
Depth BWS (ft):	4	5	6	7	8					
Temp (°C):	0.4	0.9	0.9	1.1	1.8					
pH:										
Barometeric (mmHg):										
Pressure (kPa):										
Specific Conductivity (us/cm):	877	896	909	912	922					
RDO (ppm): (mg/L)	3.86	3.88	3.95	3.88	0.65					
Turbidity (NTU):										
ORP										

FIELD TESTING OF WATER SAMPLES (if small probe is used)										
Probe:										
Depth (ft)										
Temp (°C)										
pН										
Eh										

Parameter	Parameter Depth BWS (ft):			Depth BWS (ft):			Depth BWS (ft):			Method	
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3		
Oxygen (mg/L)										Hach spec 0.3-15 mg/L	
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3	
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L	
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L	
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N	
Ammonia/ Iron dilution											
Remarks:	Remarks:										

Field-Form Filled Out By:	Deana Piedra	Date:	4/1/11
QAQC Check By:	K. Hilton	Date:	4/7/11

Project ID:	Arctic Transpor	tation Networks	Site Location/Lake ID:	L98	317-Mid (ARP)
Sample Purpose:	Lake Water Qua	ality	Date: 3/14/11	Time:	13:40
FIELD MEASUREMENTS					
GPS Coord. Northing:	N70 14.032	Easting: W151 20.259	Datum: NAD83		
Measurements By:	M. Whitman	Time: nr			
Water Depth (ft):	6.27	Ice Thickness (ft): 3.74			
Freeboard (ft):	0.03	Snow Depth (ft): nr			
Elev. (BPMSL +/02):	na	Survey By: na	Date: na	Time:	na
Water Sampling By:	na	Sample Depths BWS (ft): na	Date: na	Time:	na

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Mete	er Make/N	lodel	Ser	ial No.		ampling Check		Post-Sampling QAQC Check
Dissolved Oxygen, Temp	BLM	F	lach RLD	C	100342592015		Pass			Pass
Conductivity, Temp	BLM	H	lach Rcon	d	10035	2583019	Pass			Pass
Parameters		Field Measurements								
Time:										
Depth BWS (ft):	4	5	6							
Temp (°C):	0.2	0.3	0.5							
pH:										
Barometeric (mmHg):										
Pressure (kPa):										
Specific Conductivity (us/cm):	914.0	918.0	917.0							
RDO (ppm): (mg/L)	4.5	4.2	4.0							
Turbidity (NTU):										
ORP										

FIELD TES	FIELD TESTING OF WATER SAMPLES (if small probe is used)										
Probe:											
Depth (ft)											
Depth (ft) Temp (°C)											
pН											
Eh											

Parameter	Depth E	Depth BWS (ft):			Depth BWS (ft):			BWS (ft):		Method
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	
Oxygen (mg/L)										Hach spec 0.3-15 mg/L
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N
Ammonia/ Iron dilution										
Remarks [.]	_			-			-			-

Field-Form Filled Out By:	Deana Piedra	Date:	4/1/11
QAQC Check By:	K. Hilton	Date:	4/7/11

Project ID:	Arctic Transpo	rtation Networks	Site Location/Lake ID:	L9819-Mid		
Sample Purpose:	Lake Water Qua	ality	Date: 3/15/11	Time:	12:29	
FIELD MEASUREMENTS						
GPS Coord. Northing:	N70 16.170	Easting: W151 21.363	Datum: NAD83			
Measurements By:	M. Whitman	Time: nr				
Water Depth (ft):	6.27	Ice Thickness (ft): 4.00				
Freeboard (ft):	0	Snow Depth (ft): nr				
Elev. (BPMSL +/02):	na	Survey By: na	Date: na	Time:	na	
Water Sampling By:	na	Sample Depths BWS (ft): na	Date: na	Time:	na	

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Met	er Make/N	/lodel	Ser	ial No.		ampling Check		Post-Sampling QAQC Check
Dissolved Oxygen, Temp	BLM	H	lach RLD	0	10034	100342542015		Pass		Pass
Conductivity, Temp	BLM	F	lach Rcor	nd	10035	100352583019		Pass		Pass
Parameters		Field Measurements								
Time:										
Depth BWS (ft):	4	5	6	6.25						
Temp (°C):	0.1	0.2	0.4	0.7						
pH:										
Barometeric (mmHg):										
Pressure (kPa):										
Specific Conductivity (us/cm):	417	432	452	472						
RDO (ppm): (mg/L)	5.86	6.11	6.75	0.16						
Turbidity (NTU):										
ORP										

FIELD TES	FIELD TESTING OF WATER SAMPLES (if small probe is used)										
Probe:											
Depth (ft)											
Depth (ft) Temp (°C)											
pН											
Eh											

Parameter	Depth E	Depth BWS (ft):			Depth BWS (ft):			BWS (ft):		Method
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	
Oxygen (mg/L)										Hach spec 0.3-15 mg/L
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N
Ammonia/ Iron dilution										
Remarks [.]	_			-			-			-

Field-Form Filled Out By:	Deana Piedra	Date:	4/1/11
QAQC Check By:	K. Hilton	Date:	4/7/11

Project ID:	Arctic Transporta	tion Networks	Site Location/Lake ID:	L9822		
Sample Purpose:	Lake Water Quali	ty	Date: 3/17/11	Time:		
FIELD MEASUREMENTS						
GPS Coord. Northing:	N70 15.200	Easting: W151 17.265	Datum: NAD83			
Measurements By:	Lilly	Time: nr				
Water Depth (ft):	9	Ice Thickness (ft): 4.28				
Freeboard (ft):	0.3	Snow Depth (ft): 0.35				
Elev. (BPMSL +/02):	nr	Survey By: na	Date: na	Time:	na	
Water Sampling By:	na	Sample Depths BWS (ft): na	Date: na	Time:	na	

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Met	er Make/N	lodel	Ser	ial No.	Pre-Sampling QAQC Check			Post-Sampling QAQC Check
Dissolved Oxygen, Temp	BLM	F	lach RLD	0	100342592015		Pass			Pass
Conductivity, Temp	BLM	Hach Rcond 10035258		2583019	Pass		Pass			
Parameters		Field Measurements								
Time:										
Depth BWS (ft):	5	6	7	8						
Temp (°C):	0.40	-	1.30	1.60						
pH:										
Barometeric (mmHg):										
Pressure (kPa):										
Specific Conductivity (us/cm):	nd	nd	nd	nd						
RDO (ppm): (mg/L)	8.50	8.35	7.33	0.70						
Turbidity (NTU):										
ORP										

FIELD TESTING OF WATER SAMPLES (if small probe is used)									
Probe:									
Depth (ft)									
Temp (°C)									
pН									
Eh									

Parameter	Depth E	BWS (ft):_		Depth	BWS (ft)	:	Depth	BWS (ft):		Method
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	
Oxygen (mg/L)										Hach spec 0.3-15 mg/L
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N
Ammonia/ Iron dilution										
Remarks [.]	-			-			-			-

Field-Form Filled Out By:	Deana Piedra	Date:	4/1/11
QAQC Check By:	Kristie Hilton	Date:	4/7/11

Project ID:	Arctic Transpo	ortation Networks	Site Location/Lake ID:		L9824	
Sample Purpose:	Lake Water Qu	ality	Date: 3/17/11	Time:	nr	
FIELD MEASUREMENTS						
GPS Coord. Northing:	N70 17.054	Easting: W 51 15.962	Datum: NAD83			
Measurements By:	Lilly	Time: nr				
Water Depth (ft):	9.42	Ice Thickness (ft): 3.24				
Freeboard (ft):	0.13	Snow Depth (ft): 0.49				
Elev. (BPMSL +/02):	nr	Survey By: na	Date: na	Time:	na	
Water Sampling By:	na	Sample Depths BWS (ft): na	Date: na	Time:	na	

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Met	er Make/N	lodel	Ser	ial No.	Pre-Sampling QAQC Check		Post-Sampling QAQC Check
Dissolved Oxygen, Temp	BLM	Hach RLDO		100342592015		Pass		Pass	
Conductivity, Temp	BLM	Hach Rcond 100352583019			Pass		Pass		
Parameters			Field Measurements						
Time:									
Depth BWS (ft):	4	5	6	7	8	9			
Temp (°C):	2.7	1.5	1.2	1.3	1.5	1.8			
pH:									
Barometeric (mmHg):									
Pressure (kPa):									
Specific Conductivity (us/cm):	172	176	178	179	188	279			
RDO (ppm): (mg/L)	3.49	3.09	2.16	1.58	0.87	0.42			
Turbidity (NTU):									
ORP									

FIELD TESTING OF WATER SAMPLES (if small probe is used)									
Probe:									
Depth (ft)									
Depth (ft) Temp (°C)									
pН									
Eh									

Parameter	Depth E	3WS (ft):_		Depth	BWS (ft)	:	Depth	BWS (ft):		Method
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	
Oxygen (mg/L)										Hach spec 0.3-15 mg/L
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N
Ammonia/ Iron dilution										
Remarks:	-			-			-			-

Field-Form Filled Out By:	Deana Piedra	Date:	4/1/11
QAQC Check By:	Kristie Hilton	Date:	4/7/11

Project ID:	Arctic Transpo	rtation Networks	Site Location/Lake ID:	0: MC7916-Mid		
Sample Purpose:	Lake Water Qua	ality	Date: 3/15/11	Time:	10:56	
FIELD MEASUREMENTS						
GPS Coord. Northing:	N70 17.938	Easting: W151 27.767	Datum: NAD83			
Measurements By:	M. Whitman	Time: 10:56				
Water Depth (ft):	7.51	Ice Thickness (ft): 4.13				
Freeboard (ft):	0.39	Snow Depth (ft): nr				
Elev. (BPMSL +/02):	na	Survey By: na	Date: na	Time:	na	
Water Sampling By:	na	Sample Depths BWS (ft): na	Date: na	Time:	na	

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Met	er Make/N	/lodel	Ser	ial No.		ampling Check	Post-Sampling QAQC Check
Dissolved Oxygen, Temp	BLM	F	lach RLD	0	10034	2542015	Pa	ass	Pass
Conductivity, Temp	BLM	F	lach Rcor	nd	10035	2583019	Pa	ass	Pass
Parameters						Field Meas	urements		
Time:									
Depth BWS (ft):	4	5	6	7					
Temp (°C):	0.5	0.9	0.9	1.6					
pH:									
Barometeric (mmHg):									
Pressure (kPa):									
Specific Conductivity (us/cm):	317	322	328	332					
RDO (ppm): (mg/L)	7.86	7.84	8.19	4.27					
Turbidity (NTU):									
ORP									

FIELD TES	TING OF WATER S	SAMPLES	if small	probe is u	sed)
Probe:					
Depth (ft)					
Depth (ft) Temp (°C)					
pН					
Eh					

Parameter	Depth E	BWS (ft):_		Depth	n BWS (ft)	:	Depth	BWS (ft):		Method
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	
Oxygen (mg/L)										Hach spec 0.3-15 mg/L
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N
Ammonia/ Iron dilution										
Remarks [.]	_			-			-			-

Field-Form Filled Out By:	Deana Piedra	Date:	4/1/11
QAQC Check By:	K. Hilton	Date:	4/7/11

Project ID:	Arctic Transpo	rtation Networks	Site Location/Lake ID:	F	R0061-Mid	
Sample Purpose:	Lake Water Qua	ality	Date: 3/14/11	Time:	16:48	
FIELD MEASUREMENTS						
GPS Coord. Northing:	N70 10.244	Easting: W151 47.433	Datum: NAD83			
Measurements By:	M. Whitman	Time: 16:48				
Water Depth (ft):	6.43	Ice Thickness (ft): 3.28				
Freeboard (ft):	0.1	Snow Depth (ft): nr				
Elev. (BPMSL +/02):	na	Survey By: na	Date: na	Time:	na	
Water Sampling By:	na	Sample Depths BWS (ft): na	Date: na	Time:	na	

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Met	er Make/N	/lodel	Ser	ial No.		ampling Check	Post-Sampling QAQC Check
Dissolved Oxygen, Temp	BLM	F	lach RLD	0	10034	2592015	Pa	ass	Pass
Conductivity, Temp	BLM	F	lach Rcor	nd	10035	2583019	Pa	ass	Pass
Parameters						Field Meas	urements		
Time:									
Depth BWS (ft):	4	5	6	6.5					
Temp (°C):	0.3	0.8	1.7	1.8					
pH:									
Barometeric (mmHg):									
Pressure (kPa):									
Specific Conductivity (us/cm):	424	423	427	438					
RDO (ppm): (mg/L)	7.83	7.80	6.28	5.61					
Turbidity (NTU):									
ORP									

FIELD TES	TING OF WATER S	SAMPLES	if small	probe is u	sed)
Probe:					
Depth (ft)					
Depth (ft) Temp (°C)					
pН					
Eh					

Parameter	Depth E	3WS (ft):_		Depth	BWS (ft)	:	Depth	BWS (ft):		Method
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	
Oxygen (mg/L)										Hach spec 0.3-15 mg/L
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N
Ammonia/ Iron dilution										
Remarks:	-			-			-			-

Field-Form Filled Out By:	Deana Piedra	Date:	4/1/11
QAQC Check By:	K. Hilton	Date:	4/7/11

Arctic Transportation Networks Project Form F-004a: Water Quality Field-Sampling General

Project ID:	Arctic Transportation Networks		Site Location/Lak	e ID:	R0066-Mi	d
Sample Purpose:	Lake Water Qu	ality	Date: 3/14	/11 Tin	ne: 15	:46
FIELD MEASUREMENTS						
GPS Coord. Northing:	N70 08.730	Easting: W151 45.684	Datum: NAI	083		
Measurements By:	M. Whitman	Time: 15:46				
Water Depth (ft):	8.79	Ice Thickness (ft): 3.28				
Freeboard (ft):	0.03	Snow Depth (ft): nr				
Elev. (BPMSL +/02):	na	Survey By: na	Date: na	a Tim	ne: r	na
Water Sampling By:	na	Sample Depths BWS (ft): na	Date: n	a Tin	ne: r	na

WATER QUALITY METER INFORMATION Calibration Information

Parameter (s)	Owner	Met	er Make/N	/lodel	Ser	ial No.		ampling Check	Post-Sampling QAQC Check
Dissolved Oxygen, Temp	BLM	F	lach RLD	0	10034	2592015	Pa	ass	Pass
Conductivity, Temp	BLM	F	lach Rcor	nd	10035	2583019	Pa	ass	Pass
Parameters		Field Measu				urements			
Time:									
Depth BWS (ft):	4	5	6	7	8	9	10		
Temp (°C):	0.6	1.1	1.6	1.9	2.2	2.6	2.9		
pH:									
Barometeric (mmHg):									
Pressure (kPa):									
Specific Conductivity (ųS/cm):	247	251	255	263	269	370	365		
RDO (ppm): (mg/L)	7.83	7.32	5.64	3.77	2.24	0.45	0.12		
Turbidity (NTU):									
ORP									

FIELD TES	FIELD TESTING OF WATER SAMPLES (if small probe is used)							
Probe:	Probe:							
Depth (ft)								
Depth (ft) Temp (°C)								
pН								
Eh								

NORTH SLOPE LAB CHEMISTRY ANALYSIS

Parameter	Depth E	Depth BWS (ft):		Depth BWS (ft):		Depth BWS (ft):			Method	
	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	rep 1	rep 2	rep 3	
Oxygen (mg/L)										Hach spec 0.3-15 mg/L
Alkalinity (mg/L as CaCO ₃)										Digital titrator 10-4000 mg/L as CaCO3
Total ironUF (mg/L)										Hach spec 0.02-3.00 mg/L
Filtered IronF tot Fe (mg/L)										Hach spec 0.02-3.00 mg/L
Ammonia (mg/L NH ₃ -N)****										0.01-0.50 mg/L NH3-N
Ammonia/ Iron dilution										
Remarks [.]	_			-			-			-

Field-Form Filled Out By:	Deana Piedra	Date:	4/1/11
QAQC Check By:	K. Hilton	Date:	4/7/11

APPENDIX B. SNOW SURVEY FORMS

The following forms report the snow survey information obtained during field sampling.

Project ID: Survey Purpo	se:	ATN Determine snow d		Site Location/Lake ID Date: 3/17/2011	0: L9312 - Lake (Raft B) Time:nr
Location Description:	On lake surfa	ace near L9312 "Raft B: loc	ation.		
Survey objective:	Determine snow depth and density for application to lake recharge Weather Cold, brestudies, and tundra travel management.				Cold, breeze
Latitude:	N 70° 20.008	Longitude:	W 150° 57.083'	Datum:	NAD 83
Elevation:	7 ft	Elevation Datum:	BPMSL	Reference Markers:	None, Ice surface
Drainage Basin:	Colville Basir	n Slope Direction:	Flat	Vegetation Type:	None, Ice surface
Slope Angle:	Flat	Access Notes:	Hagglund	Other:	
Snow Depth Probe Type: T- probe			Snow-Survey	r Team Names:	
Snow Tube T	ype:	Adirondack Snow Tube		Jeff Derry, Ho	oracio Toniolo

Snow Course Depths (cm)

	1	2	3	4	5
1	20.0	18.0	10.0	14.0	15.0
2	18.0	19.0	10.0	18.0	18.0
3	15.0	19.0	12.0	22.0	19.0
4	17.0	20.0	13.0	28.0	23.0
5	20.0	20.0	11.0	21.0	24.0
6	18.0	16.0	13.0	41.0	21.0
7	18.0	17.0	13.0	31.0	20.0
8	41.0	17.0	9.0	27.0	15.0
9	25.0	10.0	10.0	23.0	12.0
10	22.0	8.0	15.0	18.0	10.0

Average snow depth =	(cm) 18.3 41.0
Maximum snow depth = Minimum snow depth =	8.0
Standard variation =	7.0
Average anow dopth -	(inches) 7.2
Average snow depth = _	16.1
Minimum snow depth =	3.1
Standard variation =	2.7

Snow Sample Depths and Weights

1		0			
Bag #	Snow Depth (cm)	Weight	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
	(CIII)	(g)	(UIIPS)	(g/cnr·s)	(CIII)
F15	16	189.6	571.2	0.33	
F14	26	322.5	928.2	0.35	
F12	26	321.5	928.2	0.35	
F11	20	250.8	714.0	0.35	
T4	20	242.2	714.0	0.34	
		Aver	age Density =	0.343	
	Average Snow	6.3	cm H2O		
	Averag	2.47	inches H2O		
	Averag	0.21	feet H2O		

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: K. Hilton

Project ID: Survey Purpo						
Location Description:		staked course, adjacent	· · ·		_ Time: nr	
Survey objective:		ow depth and density for tundra travel managemer		charge Weather Observations	Cold , Breeze	
Latitude:	N 70° 19.995	Longitude	e: W 150° 56.918'	Datum:	NAD 83	
Elevation:	7 ft	Elevation Datum:	BPMSL	Reference Markers:	Orange stakes	
Drainage Basin:	Colville River	Slope	Flat	Vegetation Type:	Lowland Wet Sedge Tundra	
Slope Angle:	Flat	Access Notes:	Haggland	Other:		
Snow Depth Probe Type: T-probe			Snow-Surve	y Team Names:		
Snow Tube T	ype:	Adirondack Snow Tube		Jeff Derry, H	oracio Toniolo	

Snow Course Depths (cm)

	1	2	3	4	5
1	43.0	46.0	28.0	40.0	53.0
2	44.0	53.0	42.0	52.0	70.0
3	39.0	53.0	55.0	56.0	71.0
4	39.0	47.0	46.0	58.0	70.0
5	41.0	41.0	43.0	58.0	57.0
6	68.0	36.0	33.0	78.0	60.0
7	45.0	32.0	34.0	57.0	49.0
8	41.0	47.0	34.0	44.0	37.0
9	46.0	20.0	30.0	41.0	50.0
10	45.0	34.0	31.0	36.0	55.0

	(cm)
Average snow depth =	46.6
Maximum snow depth =	78.0
Minimum snow depth =	20.0
Standard variation =	12.2
	(inches)
Average snow depth =	18.3
Maximum snow depth =	30.7
Minimum snow depth =	7.9

Standard variation = 4.8

Snow Sample Depths and Weights

		0			
Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
T20	36	362.9	1285.2	0.28	
B40	38	369.2	1356.6	0.27	
2E	16	131.0	571.2	0.23	2
T5	20	205.0	714.0	0.29	
11C	56	823.7	1999.2	0.41	
		0.297			
	Average Snov	13.8	cm H2O		
	Average Snow Water Equivalent =				inches H2O
	Avera	0.45	feet H2O		

SWE = avg. snow depth*(density snow/density water)

Data entered by: D.Piedra Data QA/QC by: K. Hilton

Project ID: Survey Purpo	ose:	ATN Determine snow depth, SWE				ation/Lake ID 3/17/2011	: L9321 - Lake Surface Time: 11:45
Location Description:	Middle of lake. Used GPS to locate as close to middle as possible.						
Survey objective:		snow depth and density for application to lake recharge d tundra travel management.				Weather Observations	Cold, Clear, Breeze
Latitude:	N 70° 20.561	Longi	tude:	W 151° 01.611'		Datum:	NAD 83
Elevation:	23 ft	Eleva Datun		BPMSL		Reference Markers:	none
Drainage Basin:	Colville Basin	Slope Direct		Flat		Vegetation Type:	None, Ice surface
Slope Angle:	Flat	Acces Notes		Hagglund		Other:	
Snow Depth Probe Type: T- probe					Snow-Survey	Team Names:	
Snow Tube T	Snow Tube Type: Adirondack Snow Tube					Jeff Derry, Ho	pracio T

Snow Course Depths (cm)

	1	2	3	4	5
1	21.0	23.0	18.0	16.0	25.0
2	21.0	24.0	18.0	18.0	26.0
3	22.0	21.0	16.0	16.0	22.0
4	20.0	19.0	15.0	12.0	28.0
5	19.0	18.0	16.0	14.0	33.0
6	18.0	20.0	21.0	14.0	29.0
7	20.0	17.0	17.0	14.0	34.0
8	18.0	16.0	17.0	22.0	19.0
9	18.0	16.0	19.0	33.0	20.0
10	20.0	15.0	15.0	30.0	29.0

	(cm)
Average snow depth =	20.2
Maximum snow depth =	34.0
Minimum snow depth =	12.0
Standard variation =	5.3
	(inches)
Average snow depth =	8.0
Maximum snow depth =	13.4
Minimum snow depth =	4.7

Standard variation = 2.1

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
T1	22	253.2	785.4	0.32	
P3	23	293.1	821.1	0.36	
Τ7	14	153.1	499.8	0.31	
B41	14	157.6	499.8	0.32	
P4	14	140.6	499.8	0.28	
		Aver	0.316		
	Average Snow	Water Equiv	6.4	cm H2O	
	Averag	e Snow Wate	2.52	inches H2O	
	Averag	e Snow Wate	0.21	feet H2O	

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID: Survey Purpose:		ATN Determine snow depth, SWE		ite Location/Lake ID Date: <u>3/17/2011</u>	: L9321 - Tundra Time: nr
Location Description:	On tundra nea	ar lake.			
Survey objective:		ow depth and density for a undra travel management.	pplication to lake recharge	e Weather Observations	Cold, Dark, Breeze
Latitude:	N 70° 20.441'	Longitude:	W 151° 01.938'	Datum:	NAD 83
Elevation:	7 ft	Elevation Datum:	BPMSL	Reference Markers:	none
Drainage Basin:	Colville River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat	Access Notes:	Hagglund	Other:	Hard surface layer, consistent throughout
Snow Depth Probe Type: T-probe				Snow-Survey	Team Names:
Snow Tube T	уре:	Adirondack Snow Tube		Jeff Derry, Ho	pracio T

Snow Course Depths (cm)

	1	2	3	4	5
1	26.0	25.0	25.0	23.0	24.0
2	27.0	27.0	20.0	27.0	21.0
3	30.0	27.0	29.0	30.0	23.0
4	29.0	27.0	16.0	24.0	25.0
5	29.0	24.0	23.0	22.0	24.0
6	37.0	23.0	21.0	23.0	26.0
7	36.0	23.0	20.0	21.0	23.0
8	34.0	24.0	21.0	23.0	21.0
9	33.0	23.0	22.0	23.0	20.0
10	33.0	25.0	23.0	25.0	19.0

	(cm)
	(CIII)
Average snow depth =	25.0
Maximum snow depth =	37.0
Minimum snow depth =	16.0
Standard variation =	4.4
	(inches)
Average snow depth = _	(inches) 9.8
Average snow depth = _ Maximum snow depth = _	· /
• · <u> </u>	9.8
Maximum snow depth =	<u>9.8</u> 14.6

Snow Sample Depths and Weights

		5			
Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
Т3	28	289.6	999.6	0.29	
11B	25	279.9	892.5	0.31	
C1	28	410.4	999.6	0.41	
Z2	24	277.3	856.8	0.32	
11A	22	226.5	785.4	0.29	
		0.325			
	Average Snow	Water Equiv	8.1	cm H2O	
	Average Snow Water Equivalent =				inches H2O
	Averag	0.27	feet H2O		

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID:		AT	ATN		tion/Lake ID:	L9322 - Lake	
Survey Purpose:		Determine snov	Determine snow depth, SWE		3/17/2011	Time: nr	
Location Description:	On center of I	ake.					
Survey objective:		w depth and density for application to lake recharge ndra travel management.			/eather bservations	Cold, Dark, Breeze	
Latitude:	N 70° 20.269'	Longitud	de: W 151° 01.913	D	atum:	NAD 83	
Elevation:	40 ft	Elevatio Datum:	n BPMSL		eference arkers:	none	
Drainage Basin:	Colville River	Slope Direction	Flat n:		egetation ype:	Lowland Wet Sedge Tundra	
Slope Angle:	Flat	Access Notes:	Hagglund	0	ther:	Hard surface layer, consistent throughout	
Snow Depth Probe Type: T-probe			S	now-Survey	Team Names:		
Snow Tube T	ype:	Adirondack Snow Tub	e	Je	eff Derry, Ho	racio T	

Snow Course Depths (cm)

	1	2	3	4	5
1	23.0	17.0	25.0	22.0	29.0
2	30.0	22.0	28.0	24.0	23.0
3	27.0	20.0	23.0	26.0	19.0
4	26.0	21.0	22.0	27.0	18.0
5	24.0	24.0	20.0	29.0	17.0
6	21.0	18.0	21.0	27.0	15.0
7	20.0	21.0	21.0	21.0	14.0
8	16.0	21.0	21.0	23.0	14.0
9	17.0	22.0	20.0	23.0	14.0
10	15.0	27.0	23.0	21.0	15.0

	(cm)
Average snow depth =	21.5
Maximum snow depth =	30.0
Minimum snow depth =	14.0
Standard variation =	4.2
	(inches)
Average snow depth =	8.5
Maximum snow depth =	11.8

Standard variation = 1.7

Minimum snow depth =

5.5

Snow Sample Depths and Weights

•		0			
Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
Z3	26	339.9	928.2	0.37	
2B	25	281.8	892.5	0.32	
T2	23	262.6	821.1	0.32	
2A	23	287.3	821.1	0.35	
Т8	21	256.4	749.7	0.34	
		0.339			
	Average Snow	7.3	cm H2O		
	Averag	2.87	inches H2O		
	Averag	e Snow Wate	er Equivalent =	0.24	feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID: Survey Purpose:		ATN		Site Location/Lake ID	L9322 - Tundra
		Determine snow d	lepth, SWE	Date: 3/17/2011	Time:nr
Location Description:	On tundra nea	ar lake.			
Survey objective:		ow depth and density for a undra travel management.		ge Weather Observations	Cold, Breeze
Latitude:	N 70° 20.375'	Longitude:	W 151° 01.572'	Datum:	NAD 83
Elevation:	26 ft	Elevation Datum:	BPMSL	Reference Markers:	None
Drainage Basin:	Colville River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat	Access Notes:	Hagglund	Other:	Hard surface layer, consistent throughout
Snow Depth	Probe Type:	T-probe		Snow-Survey	Team Names:
Snow Tube T	уре:	Adirondack Snow Tube		Jeff Derry, Ho	pracio T

Snow Course Depths (cm)

	1	2	3	4	5
1	37.0	35.0	43.0	46.0	40.0
2	39.0	42.0	41.0	48.0	37.0
3	33.0	36.0	45.0	36.0	32.0
4	36.0	40.0	47.0	29.0	35.0
5	47.0	48.0	41.0	33.0	33.0
6	46.0	35.0	43.0	32.0	37.0
7	38.0	46.0	39.0	35.0	33.0
8	39.0	46.0	49.0	29.0	35.0
9	35.0	50.0	33.0	31.0	32.0
10	36.0	42.0	32.0	35.0	35.0

Average snow depth = _ Maximum snow depth =	(cm) 38.4 50.0
Minimum snow depth =	29.0
Standard variation =	5.7
Average snow depth =	(inches) 15.1
Maximum snow depth =	<u>19.7</u>
Minimum snow depth =	11.4

Standard variation = 2.3

Snow Sample Depths and Weights

		0			
Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
	(CIII)	(y)	(CHP3)	(g/cnr·3)	(CIII)
T15	33	364.5	1178.1	0.31	
B44	34	379.9	1213.8	0.31	
F13	24	245.6	856.8	0.29	
T6	30	234.1	1071.0	0.22	
T16	35	322.4	1249.5	0.26	
		Aver	rage Density =	0.277	
	Average Snow	Water Equiv	10.7	cm H2O	
	Averag	e Snow Wate	4.19	inches H2O	
	Averag	e Snow Wate	er Equivalent =	0.35	feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID: Survey Purpose:			ATN Determine snow depth, SWE		ation/Lake ID 3/17/2011	b: L9323 - Lake Surface Time: nr	
Location Description:							
Survey objective:	Determine snow depth and density for application to lake recharge studies, and tundra travel management.			<u>j</u>	Weather Observations	Cold, Clear, Breeze	
Latitude:	N 70 17.915	Longitud	le: W 151° 00.326'		Datum:	NAD 83	
Elevation:	19 ft	Elevatio Datum:	n BPMSL		Reference Markers:	none	
Drainage Basin:	Colville Basin	Slope Directior	Flat n:		Vegetation Type:	None, Ice surface	
Slope Angle:	Flat	Access Notes:	Hagglund		Other:		
Snow Depth	Probe Type:	T- probe	•		Snow-Survey	Team Names:	
Snow Tube T	уре:	Adirondack Snow Tub	9		Jeff Derry, Ho	oracio T	

Snow Course Depths (cm)

	1	2	3	4	5
1	15.0	20.0	9.0	10.0	23.0
2	17.0	19.0	9.0	8.0	23.0
3	14.0	13.0	11.0	11.0	22.0
4	15.0	11.0	9.0	10.0	21.0
5	15.0	14.0	12.0	20.0	22.0
6	14.0	14.0	12.0	19.0	24.0
7	12.0	13.0	13.0	22.0	28.0
8	13.0	12.0	11.0	23.0	28.0
9	15.0	12.0	9.0	26.0	30.0
10	18.0	10.0	15.0	25.0	28.0

Average snow depth = Maximum snow depth = Minimum snow depth = Standard variation =	(cm) 16.4 30.0 8.0 6.1
Average snow depth = Maximum snow depth = Minimum snow depth = Standard variation =	(inches) 6.4 11.8 3.1 2.4

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
T18	13	154.1	464.1	0.33	
11D	14	152.1	499.8	0.30	
P2	14	168.5	499.8	0.34	
B42	14	184.3	499.8	0.37	
11E	17	174.0	606.9	0.29	
		Aver	age Density =	0.326	
	Average Snow	Water Equiv	5.3	cm H2O	
	Averag	e Snow Wate	2.10	inches H2O	
	Averag	e Snow Wate	er Equivalent =	0.18	feet H2O

Data entered by: D. Piedra	Date: 3/22/2011
Data QA/QC by: J Derry	Date: 4/19/2011

Project ID: Survey Purpose:		ATN Determine snow o		Site Location/Lake II Date: <u>3/14/2011</u>	D: L9811 - Lake Surface Time: nr	
Location Description:	Middle of lake. Used GPS to locate as close to middle as possible. n:					
Survey objective:	Determine snow depth and density for application to lake recharge studies, and tundra travel management.			e Weather Observation	Cold, Clear, Breeze	
Latitude:	N 70° 12.474'	Longitude:	W 151° 10.125'	Datum:	NAD 83	
Elevation:	79 ft	Elevation Datum:	BPMSL	Reference Markers:	none	
Drainage Basin:	Colville Basin	Slope Direction:	Flat	Vegetation Type:	None, Ice surface	
Slope Angle:	Flat	Access Notes:	Hagglund	Other:		
Snow Depth Probe Type:		T- probe	T- probe		y Team Names:	
Snow Tube T	ype:	Adirondack Snow Tube		Jeff Derry, H	loracio T	

Snow Course Depths (cm)

	1	2	3	4	5
1	26.0	42.0	26.0	32.0	40.0
2	27.0	44.0	23.0	31.0	36.0
3	28.0	46.0	22.0	36.0	42.0
4	33.0	44.0	23.0	37.0	38.0
5	29.0	36.0	22.0	31.0	34.0
6	36.0	29.0	26.0	34.0	33.0
7	44.0	31.0	26.0	33.0	31.0
8	45.0	31.0	25.0	38.0	39.0
9	44.0	33.0	28.0	39.0	43.0
10	43.0	27.0	34.0	48.0	34.0

Average snow depth = Maximum snow depth = Minimum snow depth =	(cm) 34.0 48.0 22.0
Standard variation =	7.0
	(inches)
Average snow depth =	13.4
Maximum snow depth =	18.9
Minimum snow depth =	8.7

Standard variation = 2.8

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug	
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)	
C1	24	323.0	856.8	0.38		
C5	17	196.0	606.9	0.32		
C4	19	210.5	678.3	0.31		
C2	28	301.4	999.6	0.30		
na	na	na	na	na		
		Aver	age Density =	0.328		
	Average Snow Water Equivalent (SWE) = 11.2					
	Average	4.40	inches H2O			
Average Snow Water Equivalent = 0.37 feet H2O						

Data entered by: Deana Pie	Date: 4/1/2011
Data QA/QC by: J Derry	Date: 4/7/11

Project ID: Survey Purpose:		ATN Determine snow de	epth, SWE	Site Location/Lake Date: <u>3/14/2017</u>	
Location Description:	On tundra nea	ar lake.			
Survey objective:		ow depth and density for ap undra travel management.	oplication to lake recha	rge Weather Observation	Cold, Dark, Breeze
Latitude:	N 70° 13.151'	Longitude:	W 151° 9.296'	Datum:	NAD 83
Elevation:	85 ft	Elevation Datum:	BPMSL	Reference Markers:	None
Drainage Basin:	Colville River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat	Access Notes:	Hagglund	Other:	Hard surface layer, consistent throughout
Snow Depth	Snow Depth Probe Type: T-probe			Snow-Surv	ey Team Names:
Snow Tube Type: Adirondack Snow Tube				Jeff Derry,	Horacio T

Snow Course Depths (cm)

	1	2	3	4	5
1	23.0	37.0	31.0	29.0	35.0
2	20.0	27.0	21.0	24.0	24.0
3	21.0	35.0	22.0	41.0	28.0
4	21.0	30.0	32.0	46.0	37.0
5	26.0	33.0	33.0	46.0	38.0
6	40.0	29.0	37.0	46.0	48.0
7	35.0	31.0	42.0	37.0	52.0
8	32.0	48.0	32.0	41.0	61.0
9	29.0	32.0	29.0	33.0	62.0
10	34.0	39.0	33.0	28.0	55.0

Average snow depth =	(cm) 34.9
Maximum snow depth =	62.0
Minimum snow depth =	20.0
Standard variation =	9.9
	(inches)
Average snow depth =	13.7
Maximum snow depth =	24.4
Minimum snow depth =	7.9

Standard variation = 3.9

Snow Sample Depths and Weights

		0			
Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
T1A	28	252.7	999.6	0.25	
T1B	46	365.3	1642.2	0.22	
T1C	35	281.3	1249.5	0.23	
T1D	34	270.1	1213.8	0.22	
T1E	26	216.5	928.2	0.23	
		Aver	age Density =	0.231	
	Average Snow	8.1	cm H2O		
	Averag	3.18	inches H2O		
	Averag	0.26	feet H2O		

SWE = avg. snow depth*(density snow/density water)

Data entered by: DP Data QA/QC by: J Derry Date: 3/21/11 Date: 4/12/11

Project ID: Survey Purpose:		Determin				L9817 - Lake Surface Time: nr	
Location Description:		lake. L-shaped, 2	Date: <u>3/12/2011</u> ery 1 meter.				
Survey objective:		etermine snow depth and density for application to lake recharge studies nd tundra travel management.				Cold. Breeze	
Latitude:	N 70° 14.032'	Lo	ongitude:	W 151° 20.411'	Datum:	NAD83	
Elevation:	Approximately		evation atum:	NAD 83	Reference Markers:	none	
Drainage Basin:	Lake L9817		ope rection:	Flat	Vegetation Type:	none	
Slope Angle:	Flat		ccess otes:	Hagglund	Other:		
Snow Depth	Probe Type:	T-1	Handle Pro	be	Snow-Survey	Team Names:	
Snow Tube Type: Adirondack Snow Tube				Jeff Derry, Ho	racio Toniolo		

Snow Course Depths (cm)

	1	2	3	4	5
1	28.0	22.0	34.0	20.0	28.0
2	29.0	25.0	29.0	18.0	24.0
3	26.0	26.0	26.0	18.0	14.0
4	27.0	29.0	22.0	18.0	13.0
5	22.0	31.0	23.0	20.0	14.0
6	25.0	34.0	20.0	20.0	12.0
7	27.0	36.0	19.0	16.0	14.0
8	25.0	41.0	17.0	15.0	13.0
9	26.0	29.0	16.0	16.0	11.0
10	23.0	26.0	16.0	20.0	8.0

	(cm)
Average snow depth =	22.2
Maximum snow depth =	41.0
Minimum snow depth =	8.0
Standard variation =	7.0
	(inches)

Average snow depth =	8.7
Maximum snow depth =	16.1
Minimum snow depth =	3.1
Standard variation =	2.8

Snow Sample Depths and Weights

		0			
Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
T7	14	160.0	499.8	0.32	
T10	24	263.9	856.8	0.31	
Т9	20	226.4	714.0	0.32	
T8	20	235.1	714.0	0.33	
T6	40	462.6	1428.0	0.32	
		Aver	age Density =	0.320	
	Average Snow	7.1	cm H2O		
	Averag	2.80	inches H2O		
	Averag	er Equivalent =	0.23	feet H2O	

Data entered by: Deana Piedr	Date: 4/12/2011
Data QA/QC by: Kristie Hilton	Date: 4/12/11

Project ID: Survey Purpose:		AT Determine sno		Site Location/Lake ID Date: <u>3/12/2011</u>	: L9817 - Tundra Surface Time: nr	
Location Description:	At unmarked si	now course site near ca	mera station.			
Survey objective:		w depth and density for /el management.	application to lake recha	arge studies,Weather Observations	Cold, Clear, Breeze	
Latitude:	N 70° 14.046'	Longituc	e: W 151° 19.912'	Datum:	NAD 83	
Elevation:	Approximately	10 ft Elevation Datum:	n NGVD29	Reference Markers:	None	
Drainage Basin:	Lake L9817	Slope Directior	Flat n:	Vegetation Type:	Tussock Tundra	
Slope Angle:	Flat	Access Notes:	Hagglund	Other:		
Snow Depth	Probe Type:	T- probe		Snow-Survey	Team Names:	
Snow Tube T	ype:	Adirondack Snow Tube	9	Jeff Derry, Ho	pracio Toniolo	

Snow Course Depths (cm)

	1	2	3	4	5
1	40.0	41.0	35.0	32.0	44.0
2	55.0	41.0	35.0	27.0	28.0
3	56.0	44.0	34.0	45.0	21.0
4	55.0	45.0	23.0	35.0	32.0
5	46.0	42.0	21.0	45.0	35.0
6	42.0	37.0	37.0	34.0	37.0
7	41.0	29.0	30.0	32.0	27.0
8	43.0	28.0	37.0	28.0	27.0
9	45.0	28.0	38.0	35.0	27.0
10	40.0	27.0	32.0	42.0	25.0

	(cm)
Average snow depth =	36.1
Maximum snow depth =	56.0
Minimum snow depth =	21.0
Standard variation =	8.5
	(inches)
Average snow depth =	14.2

Average snow depth =	14.2
Maximum snow depth =	22.0
Minimum snow depth =	8.3
Standard variation =	3.3

Snow Sample Depths and Weights

		0			
Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
T1	45	448.9	1606.5	0.28	
T2	26	163.0	928.2	0.18	
Т3	20	94.6	714.0	0.13	
T4	30	204.9	1071.0	0.19	
T5	30	229.0	1071.0	0.21	
		Aver	age Density =	0.199	
	Average Snow	7.2	cm H2O		
	Averag	2.82	inches H2O		
	Averag	er Equivalent =	0.24	feet H2O	

Data entered by: Deana Piedr	Date: 4/12/2011
Data QA/QC by: Kristie Hilton	Date: 4/12/11

Project ID: Survey Purpose:			ATN termine snow depth, SWE		Site Location/Lake ID: Date: <u>3/15/2011</u>		L9819 - Lake Surface Time: nr	
Location Description:	Middle of lake	e. Used GPS to locate	e as clos	se to middle as possib	le.			
Survey objective:		snow depth and density for application to lake recharge d tundra travel management.				Weather Observations	Cold, Clear, Breeze	
Latitude:	N 70° 16.170	Longi	itude:	W 151° 21.363'		Datum:	NAD 83	
Elevation:	60 ft	Eleva Datur		BPMSL		Reference Markers:	none	
Drainage Basin:	Colville Basin	Slope Direc		Flat		Vegetation Type:	None, Ice surface	
Slope Angle:	Flat	Acces Notes		Hagglund		Other:		
Snow Depth	Probe Type:	T- pro	obe			Snow-Survey	Team Names:	
Snow Tube T	уре:	Adirondack Snow T	ube			Jeff Derry, Ho	pracio T	

Snow Course Depths (cm)

	1	2	3	4	5
1	14.0	22.0	21.0	18.0	36.0
2	14.0	22.0	18.0	22.0	38.0
3	14.0	21.0	21.0	22.0	46.0
4	17.0	19.0	24.0	24.0	42.0
5	23.0	20.0	22.0	26.0	44.0
6	23.0	16.0	24.0	27.0	42.0
7	27.0	19.0	28.0	31.0	35.0
8	26.0	20.0	18.0	37.0	32.0
9	26.0	21.0	17.0	37.0	28.0
10	26.0	21.0	16.0	37.0	19.0

	(cm)
Average snow depth =	25.3
Maximum snow depth =	46.0
Minimum snow depth =	14.0
Standard variation =	8.3
	(inches)
Average snow depth =	9.9
Maximum snow depth =	18.1
Minimum snow depth =	5.5

Standard variation = 3.3

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
C1	15	190.4	535.5	0.36	
2B	16	190.3	571.2	0.33	
11A	12	141.8	428.4	0.33	
T5	14	165.7	499.8	0.33	
P1	12	137.5	428.4	0.32	
		Ave	rage Density =	0.334	
	Average Snow	8.4	cm H2O		
	Averag	e Snow Wate	3.33	inches H2O	
	Averag	er Equivalent =	0.28	feet H2O	

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID:		ATN	ATN): L9819 - Tundra
Survey Purpose: Determine snow depth, SWE			Date: 3/15/2011 Time: 9:0		
Location Description:	On tundra nea	ır lake			
Survey objective:		ow depth and density for ap undra travel management.	pplication to lake recha	rge Weather Observations	Cold, Dark, Breeze
Latitude:	N 70° 15.764'	Longitude:	W 151° 22.318'	Datum:	NAD 83
Elevation:	70 ft	Elevation Datum:	BPMSL	Reference Markers:	none
Drainage Basin:	Colville River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat	Access Notes:	Hagglund	Other:	Hard surface layer, consistent throughout
Snow Depth	Probe Type:	T-probe		Snow-Survey	/ Team Names:
Snow Tube T	уре:	Adirondack Snow Tube		Jeff Derry, He	oracio T

Snow Course Depths (cm)

	1	2	3	4	5
1	53.0	35.0	29.0	51.0	32.0
2	51.0	34.0	41.0	57.0	29.0
3	52.0	36.0	30.0	52.0	35.0
4	52.0	40.0	32.0	52.0	52.0
5	49.0	45.0	29.0	51.0	68.0
6	52.0	39.0	38.0	47.0	61.0
7	44.0	57.0	69.0	39.0	56.0
8	45.0	55.0	67.0	55.0	60.0
9	50.0	36.0	46.0	42.0	58.0
10	42.0	33.0	45.0	37.0	37.0

Average snow depth = Maximum snow depth =	(cm) 45.9 69.0
Minimum snow depth =	29.0
Standard variation =	10.7
	(inches)
Average snow depth =	18.1
Maximum snow depth =	27.2
Minimum snow depth =	11.4

Standard variation = 4.2

Snow Sample Depths and Weights

		0			
Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
Т8	29	212.5	1035.3	0.21	
P4	23	203.9	821.1	0.25	
P3	38	419.5	1356.6	0.31	
T1	32	339.5	1142.4	0.30	
T2	32	225.8	1142.4	0.20	
			age Density =	0.252	1100
	Average Snow	Water Equiv	11.6	cm H2O	
	Averag	4.55	inches H2O		
	Averag	e Snow Wate	er Equivalent =	0.38	feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID: Survey Purpo				ation/Lake ID 3/15/2011	: L9822 - Lake Surface Time: nr		
Location Description:	Middle of lake	e. Used GPS to locat	te as clo	se to middle as possibl	e.		
Survey objective:		ow depth and densit undra travel manage		plication to lake rechar		Weather Observations	Cold, Clear, Breeze
Latitude:	N 70° 15.200	Long	itude:	W 151° 17.265'		Datum:	NAD 83
Elevation:	20 ft	Eleva Datu		BPMSL		Reference Markers:	none
Drainage Basin:	Colville Basin	Slope Direc		Flat		Vegetation Type:	None, Ice surface
Slope Angle:	Flat	Acce Notes		Hagglund		Other:	
Snow Depth	Probe Type:	T- pro	obe			Snow-Survey	Team Names:
Snow Tube T	уре:	Adirondack Snow T	Tube			Jeff Derry, Ho	pracio T

Snow Course Depths (cm)

	1	2	3	4	5
1	10.0	13.0	8.0	11.0	12.0
2	11.0	10.0	9.0	16.0	12.0
3	10.0	8.0	10.0	14.0	9.0
4	10.0	7.0	11.0	10.0	10.0
5	6.0	9.0	12.0	9.0	9.0
6	11.0	7.0	13.0	6.0	9.0
7	12.0	7.0	13.0	7.0	12.0
8	11.0	8.0	13.0	9.0	12.0
9	10.0	9.0	12.0	10.0	12.0
10	12.0	9.0	12.0	7.0	16.0

	(cm)
Average snow depth =	10.3
Maximum snow depth =	16.0
Minimum snow depth =	6.0
Standard variation =	2.3
	(inches)
Average snow depth =	4.1
Maximum snow donth -	63

Maximum snow depth =	6.3
Minimum snow depth =	2.4
Standard variation =	0.9

Snow Sample Depths and Weights

		•			
Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
ZB	10	103.3	357.0	0.29	
P3	11	102.7	392.7	0.26	
T7	9	94.4	321.3	0.29	
Z3	9	97.6	321.3	0.30	
T15	10	98.3	357.0	0.28	
		Aver	rage Density =	0.285	
	Average Snow Water Equivalent (SWE) =			2.9	cm H2O
	Averag	e Snow Wate	1.15	inches H2O	
	Averag	e Snow Wate	er Equivalent =	0.10	feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID: ATN		Site Lo	cation/Lake ID	L9822 - Tundra		
Survey Purpo	Purpose: Determine snow depth, SWE		VE Date:	3/15/2011	Time: 9:00	
Location Description:	On tundra nea	ar lake				
Survey objective:		ow depth and density undra travel managen		n to lake recharge	Weather Observations	Cold, Breeze
Latitude:	N 70° 15.265'	Longit	ude: W 15	1° 17.291'	Datum:	NAD 83
Elevation:	48 ft	Elevat Datum	-	SL	Reference Markers:	None
Drainage Basin:	Colville River	Slope Directi	Flat on:		Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat	Acces Notes:	00	lund	Other:	Hard surface layer, consistent throughout
Snow Depth	Probe Type:	T-prob	e		Snow-Survey	Team Names:
Snow Tube T	уре:	Adirondack Snow Tu	be		Jeff Derry, Ho	pracio T

Snow Course Depths (cm)

	1	2	3	4	5
1	39.0	38.0	46.0	42.0	45.0
2	55.0	25.0	35.0	49.0	42.0
3	42.0	27.0	40.0	61.0	43.0
4	42.0	25.0	40.0	46.0	50.0
5	48.0	37.0	36.0	39.0	43.0
6	44.0	39.0	45.0	50.0	55.0
7	51.0	52.0	46.0	51.0	50.0
8	45.0	52.0	30.0	48.0	41.0
9	41.0	40.0	35.0	59.0	42.0
10	49.0	52.0	40.0	36.0	32.0

	(cm)
Average snow depth =	43.2
Maximum snow depth =	61.0
Minimum snow depth =	25.0
Standard variation =	8.0
	(inches)
Average snow depth =	17.0
Maximum snow depth =	24.0
Minimum snow depth =	9.8

Standard variation = 3.1

Snow Sample Depths and Weights

		5			
Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
C4	30	252.4	1071.0	0.24	
11C	34	549.2	1213.8	0.45	
11E	28	195.2	999.6	0.20	
Т3	46	462.4	1642.2	0.28	
11D	14	110.3	499.8	0.22	
		0.277			
	Average Snow Water Equivalent (SWE) =				cm H2O
	Average Snow Water Equivalent =				inches H2O
	Average Snow Water Equivalent =				feet H2O
					_

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID: Survey Purpo					cation/Lake ID 3/16/2011		
Location Description:	Middle of lake	e. Used GPS to locate	e as clos	se to middle as possible	e.		
Survey objective:		Determine snow depth and density for application to lake recharge studies, and tundra travel management.			je	Weather Observations	Cold, Clear, Breeze
Latitude:	N 70° 16' 14.9	9" Longi	itude:	W 151° 43' 44.9"		Datum:	NAD 83
Elevation:	43 ft	Eleva Datur		BPMSL		Reference Markers:	none
Drainage Basin:	Colville Basin	Slope Direct		Flat		Vegetation Type:	None, Ice surface
Slope Angle:	Flat	Acces Notes		Hagglund		Other:	
Snow Depth Probe Type: T- probe		obe			Snow-Survey	Team Names:	
Snow Tube T	уре:	Adirondack Snow T	ube			Jeff Derry, Ho	oracio T

Snow Course Depths (cm)

	1	2	3	4	5
1	12.0	14.0	11.0	15.0	19.0
2	13.0	20.0	10.0	17.0	16.0
3	15.0	22.0	9.0	19.0	15.0
4	14.0	20.0	9.0	15.0	19.0
5	14.0	15.0	10.0	11.0	19.0
6	14.0	21.0	11.0	12.0	15.0
7	16.0	19.0	12.0	14.0	16.0
8	16.0	18.0	17.0	14.0	17.0
9	15.0	12.0	19.0	19.0	17.0
10	15.0	13.0	18.0	21.0	15.0

Average snow depth = Maximum snow depth = Minimum snow depth =	(cm) 15.4 22.0 9.0
Standard variation =	3.3
	(inches)
Average snow depth =	6.1
Maximum snow depth =	8.7
Minimum snow depth =	3.5

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
P3	12	111.2	428.4	0.26	
2B	14	152.1	499.8	0.30	
F15	22	261.1	785.4	0.33	
Z2	17	195.3	606.9	0.32	
11B	19	119.9	678.3	0.18	
		Aver	age Density =	0.279	
	Average Snow Water Equivalent (SWE) =				cm H2O
	Averag	e Snow Wate	1.69	inches H2O	
	Averag	feet H2O			

Data entered by: Deana Piedra	Date: 3/22/2011
Data QA/QC by: Jeff Derry	Date: 4/12/2011

Project ID:		ATN	ATN			M0020 - Tundra	
Survey Purpo	ose:	Determine snow	mine snow depth, SWE		16/2011	Time: 11:20	
Location Description:	On tundra ne	ar lake.					
Survey objective:	Determine snow depth and density for application to lake rechar- studies, and tundra travel management.			U	ather Co servations	old, Clear, Breeze	
Latitude:	N 70° 15.897	Longitude	: W 151° 43.209'	Dati	um: NA	D 83	
Elevation:	55 ft	Elevation Datum:	BPMSL		erence nor kers:	ne	
Drainage Basin:	Colville Basin	Slope Direction:	Flat	Veg Typ		ne, Ice surface	
Slope Angle:	Flat	Access Notes:	Hagglund	Othe	er:		
Snow Depth Probe Type:		T- probe	T- probe		w-Survey Tea	am Names:	
Snow Tube T	уре:	Adirondack Snow Tube		Jeff	Derry, Horaci	o T	

Snow Course Depths (cm)

	1	2	3	4	5
1	23.0	19.0	49.0	41.0	46.0
2	26.0	31.0	38.0	43.0	46.0
3	35.0	35.0	53.0	16.0	47.0
4	56.0	31.0	54.0	33.0	49.0
5	61.0	25.0	52.0	37.0	49.0
6	50.0	26.0	53.0	36.0	49.0
7	38.0	26.0	35.0	45.0	65.0
8	35.0	38.0	30.0	49.0	67.0
9	45.0	40.0	38.0	42.0	62.0
10	28.0	44.0	44.0	43.0	42.0

Average snow depth = _ Maximum snow depth = _ Minimum snow depth = _ Standard variation =	(cm) 41.3 67.0 16.0 11.6
-	(inches)
Average snow depth =	16.3
Maximum snow depth =	26.4
Minimum snow depth =	6.3
Standard variation =	4.6

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
F12	26	206.9	928.2	0.22	
Z3	22	153.5	785.4	0.20	
B46	35	331.7	1249.5	0.27	
Τ7	41	458.5	1463.7	0.31	
11C	30	231.2	1071.0	0.22	
		Aver	age Density =	0.243	
	Average Snow	Water Equiv	10.0	cm H2O	
	-	e Snow Wate	3.94	inches H2O	
	Averag	e Snow Wate	er Equivalent =	0.33	feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID:				ite Location/Lake ID): M9910 - Lake
Survey Purpo				Date: 3/16/2011	Time: 1:05
Location Description:	On tundra on staked	course, adjacent and	d north of L9312 weather	r station	
Survey objective:		Determine snow depth and density for application to lake recharge studies, and tundra travel management.			Cold, Dark, Breeze
Latitude:	N 70 15.175	Longitude:	W 151° 42.900'	Datum:	NAD 83
Elevation:	76 ft	Elevation Datum:	BPMSL	Reference Markers:	Orange stakes
Drainage Basin:	Colville River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat	Access Notes:	Hagglund	Other:	Hard surface layer, consistent throughout
Snow Depth Probe Type: T-probe		Snow-Survey	/ Team Names:		
Snow Tube T	ype: Adiron	dack Snow Tube		Jeff Derry, H	oracio T

Snow Course Depths (cm)

	1	2	3	4	5
1	32.0	30.0	29.0	28.0	35.0
2	33.0	30.0	31.0	30.0	35.0
3	32.0	26.0	30.0	24.0	33.0
4	33.0	20.0	32.0	22.0	32.0
5	34.0	22.0	29.0	21.0	36.0
6	25.0	24.0	32.0	19.0	39.0
7	23.0	25.0	30.0	21.0	27.0
8	25.0	25.0	29.0	23.0	29.0
9	26.0	24.0	34.0	25.0	34.0
10	24.0	24.0	31.0	33.0	28.0

Average snow depth = Maximum snow depth =	(cm) 28.4 39.0
Minimum snow depth = Standard variation =	<u> </u>
- Average snow depth =	(inches) 11.2
Maximum snow depth =	15.4
Minimum snow depth =	7.5

Standard variation = 1.9

31.0

Snow Sample	e Depths and We	eights			
Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
Т8	32	375.6	1142.4	0.33	
11A	23	245.0	821.1	0.30	
2B	24	244.0	856.8	0.28	
B44	22	269.6	785.4	0.34	
F14	20	212.9	714.0	0.30	
		age Density =	0.311		
	Average Snow	8.8	cm H2O		
Average Snow Water Equivalent =				3.47	inches H2O
	Averag	0.29	feet H2O		

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID:					Lake ID:	M9910 - Tundra	
Survey Purpo	ose:				/2011	Time: 1:05	
Location Description:	Near Lake on t	tundra surface					
Survey objective:		w depth and density for ap ndra travel management.	plication to lake rech	U U	er Co vations	ld, Breeze	
Latitude:	N 70° 15.195'	Longitude:	W 151° 42.156'	Datum	n: NA	ND 83	
Elevation:	82 ft	Elevation Datum:	BPMSL	Refere Marke		ne	
Drainage Basin:	Colville River	Slope Direction:	Flat	Veget Type:	ation Lo [.]	wland Wet Sedge Tundra	
Slope Angle:	Flat	Access Notes:	Hagglund	Other:	-	rd surface layer, nsistent throughout	
Snow Depth Probe Type: T-probe			Snow-	Survey Tea	am Names:		
Snow Tube T	уре:	Adirondack Snow Tube		Jeff D	erry, Horac	io T	

Snow Course Depths (cm)

	1	2	3	4	5
1	39.0	40.0	42.0	52.0	47.0
2	40.0	50.0	42.0	51.0	36.0
3	46.0	48.0	45.0	53.0	34.0
4	41.0	53.0	62.0	47.0	49.0
5	36.0	50.0	36.0	51.0	27.0
6	29.0	48.0	49.0	54.0	34.0
7	40.0	45.0	56.0	56.0	30.0
8	34.0	47.0	54.0	57.0	29.0
9	38.0	45.0	47.0	53.0	31.0
10	40.0	43.0	37.0	48.0	34.0

	(cm)
Average snow depth =	43.9
Maximum snow depth =	62.0
Minimum snow depth =	27.0
Standard variation =	8.4
	(inches)
Average snow depth =	17.3
Maximum snow depth =	24.4
Minimum snow depth =	10.6

Standard variation = 3.3

Snow Sample Depths and Weights

	1	0			
Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
	(CIII)	(9)	(CIIF-3)	(g/cnr·3)	(CIII)
T15	34	323.9	1213.8	0.27	
T16	32	308.1	1142.4	0.27	
T20	42	391.1	1499.4	0.26	
Т3	44	401.6	1570.8	0.26	
T4	42	250.2	1499.4	0.17	
		0.244			
	Average Snow	10.7	cm H2O		
	Average Snow Water Equivalent =				inches H2O
	Averag	er Equivalent =	0.35	feet H2O	

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: K. Hilton

Project ID: Survey Purpc	se:					cation/Lake ID 3/16/2011	
Location Description:	Middle of lake	e. Used GPS	to locate as clo	ose to middle as possi	ble.		
Survey objective:	Determine sn studies, and t	•	, ,	pplication to lake recha	arge	Weather Observations	Cold, Clear, Breeze
Latitude:	N 70° 14' 52.	.25"	5" Longitude: W 151° 29' 0.19"			Datum:	NAD 83
Elevation:	20 ft		Elevation Datum:	BPMSL		Reference Markers:	none
Drainage Basin:	Colville Basin	l	Slope Direction:	Flat		Vegetation Type:	None, Ice surface
Slope Angle:	Flat	Access Hagglund Notes:			Other:		
Snow Depth Probe Type: T- probe				Snow-Survey	Team Names:		
Snow Tube Type: Adirondack Snow Tube				Jeff Derry, Ho	oracio T		

Snow Course Depths (cm)

	1	2	3	4	5
1	18.0	28.0	24.0	21.0	26.0
2	18.0	27.0	22.0	25.0	23.0
3	19.0	28.0	21.0	30.0	20.0
4	19.0	31.0	17.0	31.0	17.0
5	21.0	29.0	15.0	31.0	14.0
6	23.0	26.0	16.0	32.0	18.0
7	24.0	25.0	15.0	33.0	19.0
8	26.0	21.0	18.0	33.0	22.0
9	31.0	22.0	17.0	32.0	25.0
10	29.0	25.0	19.0	31.0	29.0

(cm) 23.7 33.0 14.0
5.5
(inches)
9.3
13.0
5.5

Standard variation = 2.2

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
T5	21	266.4	749.7	0.36	
F11	24	304.5	856.8	0.36	
T2	25	320.9	892.5	0.36	
F13	26	331.5	928.2	0.36	
T1	24	268.6	856.8	0.31	
		Ave	0.348		
	Average Snow	8.3	cm H2O		
	Averag	e Snow Wate	3.25	inches H2O	
	Averag	e Snow Wate	0.27	feet H2O	

SWE = avg. snow depth*(density snow/density water)

Data entered by: D.Piedra Data QA/QC by: J Derry

Project ID:	ATN			Site Location/Lake ID): L9925 - Tundra
Survey Purpo	ose:	Determine snow de	epth, SWE	Date: 3/16/2011	Time: 14:59
Location Description:	On tundra nea	ır lake			
Survey objective:		ow depth and density for ap undra travel management.	pplication to lake recharg	e Weather Observations	Cold, Breeze
Latitude:	N 70° 14' 59"	Longitude:	W 151° 28' 9"	Datum:	NAD 83
Elevation:	95 ft	Elevation Datum:	BPMSL	Reference Markers:	None
Drainage Basin:	Colville River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat Access Hagglund Notes:		Hagglund	Other:	Hard surface layer, consistent throughout
Snow Depth Probe Type: T-probe				Snow-Survey	/ Team Names:
Snow Tube T	ype:	Adirondack Snow Tube		Jeff Derry, H	pracio T

Snow Course Depths (cm)

	1	2	3	4	5
1	38.0	37.0	36.0	42.0	41.0
2	40.0	32.0	39.0	42.0	38.0
3	36.0	29.0	42.0	41.0	42.0
4	34.0	37.0	42.0	35.0	50.0
5	38.0	35.0	45.0	40.0	49.0
6	32.0	38.0	40.0	47.0	46.0
7	40.0	33.0	45.0	41.0	50.0
8	39.0	38.0	42.0	30.0	54.0
9	37.0	29.0	42.0	32.0	54.0
10	34.0	33.0	44.0	41.0	46.0

Average snow depth = Maximum snow depth = Minimum snow depth = Standard variation =	(cm) 39.7 54.0 29.0 5.9
Average snow depth = Maximum snow depth = Minimum snow depth =	(inches) 15.6 21.3 11.4

Standard variation = 2.3

Snow Sample Depths and Weights

		3			
Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
B61	32	284.1	1142.4	0.25	
P4	36	204.9	1285.2	0.16	
2A	34	298.9	1213.8	0.25	
T6	36	373.0	1285.2	0.29	
C1	27	200.1	963.9	0.21	
		0.230			
	Average Snow Water Equivalent (SWE) =				cm H2O
	Averag	3.61	inches H2O		
	Averag	e Snow Wate	er Equivalent =	0.30	feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID: Survey Purpo	ose:	ATN Determine snow		tion/Lake ID 3/15/2011	MC7916 - Lake Surface Time:	
Location Description:	Middle of lake	e. Used GPS to locate as	sible.			
Survey objective:	Determine snow depth and density for application to lake recharge studies, and tundra travel management.			J =	/eather bservations	Cold, Clear, Breeze
Latitude:	N 70° 17.938	Longitude	W 151° 27.767'	D	atum:	NAD 83
Elevation:	7 ft	Elevation Datum:	BPMSL		eference arkers:	none
Drainage Basin:	Colville Basin	Slope Direction:	Flat		egetation /pe:	None, Ice surface
Slope Angle:	Flat	Access Notes:	Hagglund	0	ther:	
Snow Depth Probe Type:		T- probe	T- probe		now-Survey	Team Names:
Snow Tube T	ype:	Adirondack Snow Tube	Snow Tube		eff Derry, Ho	oracio T

Snow Course Depths (cm)

	1	2	3	4	5
1	19.0	22.0	25.0	23.0	24.0
2	21.0	21.0	22.0	25.0	24.0
3	24.0	17.0	25.0	24.0	24.0
4	24.0	16.0	22.0	24.0	23.0
5	26.0	16.0	26.0	24.0	29.0
6	21.0	20.0	21.0	25.0	26.0
7	21.0	23.0	20.0	25.0	19.0
8	22.0	21.0	20.0	23.0	19.0
9	24.0	23.0	21.0	24.0	18.0
10	27.0	36.0	23.0	23.0	20.0

Average snow depth = Maximum snow depth = Minimum snow depth = Standard variation =	(cm) 22.7 36.0 16.0 3.3
Average snow depth = Maximum snow depth = Minimum snow depth =	(inches) 8.9 14.2 6.3

Standard variation = **1.3**

Snow Sample Depths and Weights

		5			
Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
F11	18	229.1	642.6	0.36	
F14	20	258.0	714.0	0.36	
F13	28	375.3	999.6	0.38	
F12	24	288.9	856.8	0.34	
F15	20	236.3	714.0	0.33	
		0.352			
	Average Snow Water Equivalent (SWE) =				cm H2O
	Average Snow Water Equivalent =				inches H2O
	Averag	e Snow Wate	0.26	feet H2O	

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID:		ATN Determine snow de		Site Location/Lake ID Date: <u>3/15/2011</u>		
Location Description:	On tundra nea	ar lake.				
Survey objective:		Determine snow depth and density for application to lake recharge tudies, and tundra travel management.			Cold, Clear, Breeze	
Latitude:	N 70° 17.9'	Longitude:	W 151° 26.582'	Datum:	NAD 83	
Elevation:	20 ft	Elevation Datum:	BPMSL	Reference Markers:	None	
Drainage Basin:	Colville River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra	
Slope Angle:	Flat	Access Notes:	Hagglund	Other:	Hard surface layer, consistent throughout	
Snow Depth	Probe Type:	T-probe		Snow-Survey	Team Names:	
Snow Tube T	уре:	Adirondack Snow Tube		Jeff Derry, Ho	pracio T	

Snow Course Depths (cm)

	1	2	3	4	5
1	43.0	55.0	52.0	42.0	37.0
2	45.0	56.0	55.0	41.0	36.0
3	46.0	57.0	55.0	42.0	40.0
4	46.0	58.0	55.0	44.0	43.0
5	49.0	56.0	57.0	43.0	45.0
6	48.0	50.0	59.0	46.0	51.0
7	49.0	47.0	59.0	46.0	51.0
8	51.0	47.0	50.0	46.0	46.0
9	52.0	50.0	43.0	40.0	42.0
10	54.0	51.0	40.0	40.0	38.0

Average snow depth = Maximum snow depth = Minimum snow depth = Standard variation =	(cm) 47.9 59.0 36.0 6.2
Average snow depth = Maximum snow depth =	(inches) 18.9 23.2
Minimum snow depth = Standard variation =	<u>14.2</u> 2.4

Snow Sample Depths and Weights

		0			
Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
B46	50	513.9	1785.0	0.29	
B41	32	258.1	1142.4	0.23	
B42	62	650.2	2213.4	0.29	
B44	37	396.1	1320.9	0.30	
B43	43	420.9	1535.1	0.27	
		0.276			
	Average Snow	13.2	cm H2O		
	Averag	5.21	inches H2O		
	Averag	e Snow Wate	er Equivalent =	0.43	feet H2O

Data entered by: D. Piedra	Date: 4/1/11
Data QA/QC by: Jderry	Date: 4/12/11

Project ID: Survey Purpose:		Determine	ATN Determine snow depth, SWE			cation/Lake ID 3/14/2011	R0061 - Lake Surface Time: nr	
Location Description:								
Survey objective:		Determine snow depth and density for application to lake recharge studies, and tundra travel management.			ge	Weather Observations	Cold, Clear, Breeze	
Latitude:	N 70° 10' 13.0	D" Loi	ngitude:	W 151° 47' 06.4"		Datum:	NAD 83	
Elevation:	66 ft		evation itum:	BPMSL		Reference Markers:	none	
Drainage Basin:	Colville Basin		ope rection:	Flat		Vegetation Type:	None, Ice surface	
Slope Angle:	Flat		cess ites:	Hagglund		Other:		
Snow Depth	Probe Type:	T-	probe			Snow-Survey	Team Names:	
Snow Tube Type: Adirondack			v Tube	⁻ ube		Jeff Derry, Horacio T		

Snow Course Depths (cm)

	1	2	3	4	5
1	23.0	20.0	16.0	28.0	42.0
2	17.0	21.0	13.0	29.0	46.0
3	20.0	19.0	17.0	33.0	43.0
4	19.0	20.0	16.0	27.0	23.0
5	19.0	17.0	13.0	30.0	34.0
6	20.0	19.0	13.0	33.0	39.0
7	22.0	19.0	14.0	37.0	46.0
8	21.0	19.0	34.0	34.0	34.0
9	19.0	19.0	32.0	43.0	37.0
10	20.0	19.0	27.0	44.0	34.0

	(cm)
Average snow depth =	26.1
Maximum snow depth =	46.0
Minimum snow depth =	13.0
Standard variation =	9.7
	(inches)
Average snow depth =	10.3
Maximum snow depth =	18.1
Minimum snow depth =	5.1

3.8

Standard variation =

Snow Sample Depths and Weights

	•	0			
Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
Z1	16	162.2	571.2	0.28	
Z2	20	272.9	714.0	0.38	
Z3	13	152.5	464.1	0.33	
Z4	29	326.4	1035.3	0.32	
Z5	30	327.1	1071.0	0.31	
		Aver	age Density =	0.323	
	Average Snow	Water Equiv	8.4	cm H2O	
	Average Snow Water Equivalent = 3.3			3.31	inches H2O
	Averag	e Snow Wate	0.28	feet H2O	

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID:		ATN Site Location			ion/Lake ID	R0061 - Tundra
Survey Purpo	ose:	Determine snow de	rmine snow depth, SWE Date:			Time: 9:00
Location Description:	On tundra nea	r lake				
Survey objective:		w depth and density for ap ndra travel management.	plication to lake rech	U U	eather bservations	Cold, light
Latitude:	N 70° 10' 10"	Longitude:	W 151° 45' 37"	Da	atum:	NAD 83
Elevation:	108 ft	Elevation Datum:	BPMSL		eference arkers:	None
Drainage Basin:	Colville River	Slope Direction:	Flat		egetation /pe:	Lowland Wet Sedge Tundra
Slope Angle:	Flat	Access Notes:	Hagglund	Ot	ther:	Hard surface layer, consistent throughout
Snow Depth	Probe Type:	T-probe		Sr	now-Survey	Team Names:
Snow Tube T	ype:	Adirondack Snow Tube		Je	eff Derry, Ho	racio T

Snow Course Depths (cm)

	1	2	3	4	5
1	35.0	40.0	40.0	35.0	37.0
2	33.0	41.0	37.0	42.0	32.0
3	45.0	35.0	43.0	36.0	30.0
4	37.0	40.0	42.0	45.0	27.0
5	41.0	35.0	39.0	38.0	35.0
6	38.0	36.0	46.0	42.0	37.0
7	40.0	36.0	41.0	55.0	33.0
8	39.0	40.0	35.0	61.0	38.0
9	39.0	41.0	41.0	44.0	29.0
10	40.0	47.0	32.0	38.0	34.0

	(cm)
Average snow depth =	38.8
Maximum snow depth =	61.0
Minimum snow depth =	27.0
Standard variation =	5.9
	(inches)
Average snow depth =	15.3
Maximum snow depth =	24.0
Minimum snow depth =	10.6

Standard variation = 2.3

Snow Sample Depths and Weights

		0			
Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
P2	30	202.7	1071.0	0.19	
P1	33	218.4	1178.1	0.19	
P5	26	200.3	928.2	0.22	
P4	30	193.1	1071.0	0.18	
P3	34	192.6	1213.8	0.16	
		Aver	age Density =	0.186	
	Average Snow	/Water Equiv	alent (SWE) =	7.2	cm H2O
	Average Snow Water Equivalent =			2.84	inches H2O
Average Snow Water Equivalent =			0.24	feet H2O	

SWE = avg. snow depth*(density snow/density water)

Data entered by: Deana Pied Data QA/QC by: J Derry

Project ID: Survey Purpo	ose:				n/Lake ID:	: R0066 - Lake Surface Time: nr	
Location Description:	Middle of lake	e. Used GPS to locate a	s close to middle as po	ossible.			
Survey objective:		ow depth and density fo undra travel manageme			ather (ervations	Cold, Clear, Breeze	
Latitude:	N 70° 08.608	Longitud	le: W 151° 45.740'	Datu	um: N	IAD 83	
Elevation:	95 ft	Elevation Datum:	n BPMSL		erence n kers:	one	
Drainage Basin:	Colville Basin	Slope Directior	Flat n:	Veg Type		lone, Ice surface	
Slope Angle:	Flat	Access Notes:	Hagglund	Othe	er:		
Snow Depth	Probe Type:	T- probe	1	Sno	w-Survey To	eam Names:	
Snow Tube T	уре:	Adirondack Snow Tube	9	Jeff	Derry, Hora	icio T	

Snow Course Depths (cm)

	1	2	3	4	5
1	14.0	39.0	20.0	22.0	33.0
2	20.0	32.0	17.0	22.0	32.0
3	29.0	24.0	19.0	23.0	32.0
4	28.0	30.0	22.0	18.0	31.0
5	29.0	28.0	22.0	17.0	33.0
6	25.0	34.0	21.0	19.0	30.0
7	25.0	30.0	24.0	21.0	28.0
8	25.0	24.0	20.0	20.0	28.0
9	31.0	25.0	23.0	25.0	28.0
10	38.0	20.0	22.0	27.0	32.0

Average snow depth = Maximum snow depth = Minimum snow depth =	(cm) 25.6 39.0 14.0
Standard variation =	5.6
Average snow depth =	(inches) 10.1
Maximum snow depth =	15.4
Minimum snow depth =	5.5

Standard variation = 2.2

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
T16	18	185.3	642.6	0.29	
T18	26	296.2	928.2	0.32	
T19	22	194.6	785.4	0.25	
T26	19	210.1	678.3	0.31	
15T	26	225.8	928.2	0.24	
		Ave	rage Density =	0.282	
	Average Snow Water Equivalent (SWE) =			7.2	cm H2O
	Average Snow Water Equivalent =			2.84	inches H2O
	Average Snow Water Equivalent =			0.24	feet H2O

Data entered by: Deana Piec	Date: 4/1/2011
Data QA/QC by: J Derry	Date: 4/7/11

Project ID: Survey Purpo	ose:				Location/Lake ID: L0066 - Tundra e: 3/14/2011 Time: nr		
Location Description:	On tundra neai	lake					
Survey objective:		w depth and dens ndra travel manaç	2 11	lication to lake rechar	0	Weather Observations	Cold, Light, Breeze
Latitude:	N 70° 8.503'	Lc	ongitude:	W 151° 44.591'		Datum:	NAD 83
Elevation:	95 ft		evation atum:	BPMSL		Reference Markers:	None
Drainage Basin:	Colville River		ope rection:	Flat		Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat		ccess otes:	Hagglund		Other:	Hard surface layer, consistent throughout
Snow Depth	Probe Type:	T-	probe			Snow-Survey	Team Names:
Snow Tube T	ype:	Adirondack Snov	w Tube			Jeff Derry, Ho	oracio T

Snow Course Depths (cm)

	1	2	3	4	5
1	56.0	61.0	33.0	46.0	53.0
2	43.0	50.0	36.0	66.0	64.0
3	43.0	58.0	43.0	57.0	56.0
4	43.0	38.0	43.0	55.0	30.0
5	44.0	36.0	45.0	54.0	44.0
6	55.0	52.0	42.0	48.0	55.0
7	43.0	54.0	42.0	50.0	49.0
8	52.0	81.0	43.0	46.0	53.0
9	46.0	51.0	38.0	51.0	45.0
10	48.0	39.0	44.0	52.0	44.0

	(cm)
Average snow depth =	48.4
Maximum snow depth =	81.0
Minimum snow depth =	30.0
Standard variation =	9.0
	(inches)
Average snow depth =	19.1
Maximum snow depth =	31.9
Minimum snow depth =	11.8

Standard variation = 3.5

Snow Sample Depths and Weights

1		0			
Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
2E	43	422.7	1535.1	0.28	
2D	33	290.2	1178.1	0.25	
2B	30	226.2	1071.0	0.21	
2C	40	469.5	1428.0	0.33	
2A	44	428.0	1570.8	0.27	
		Aver	age Density =	0.267	
	Average Snow Water Equivalent (SWE) =				cm H2O
	Average Snow Water Equivalent =			5.08	inches H2O
	Average Snow Water Equivalent =			0.42	feet H2O
			_		_

SWE = avg. snow depth*(density snow/density water)

Data entered by: Deana Piedr Data QA/QC by: J Derry Date: 4/1/2011 Date: 4/7/11

Project ID:	ATN Site L			Site Loc	cation/Lake ID	: Small-1 Transect
Survey Purpo	ose:	Determine snow de	epth, SWE	Date:	3/15/2011	Time: 9:00
Location Description:	At stream cros at 002 on Hora		rements across dra	ainage. Star	ted 200' from	camera. Start 001 and finish
Survey objective:		w depth and density for ap Indra travel management.	plication to lake re	U	Weather Observations	Cold, Breeze
Latitude:	N 70° 17.300'	Longitude:	W 151° 18.852'		Datum:	NAD 83
Elevation:	7 ft	Elevation Datum:	BPMSL		Reference Markers:	Near Camera an stream crossing area of interest
Drainage Basin:	Colville River	Slope Direction:	Flat		Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat	Access Notes:	Hagglund		Other:	Hard surface layer, consistent throughout
Snow Depth	Probe Type:	T-probe			Snow-Survey	Team Names:
Snow Tube T	ype:	Adirondack Snow Tube			Jeff Derry, Ho	pracio T

Snow Course Depths (cm)

	1	2	3	4	5
1	84.0	64.0	79.0	67.0	
2	72.0	57.0	80.0	60.0	
3	58.0	70.0	85.0	58.0	
4	76.0	72.0	84.0	43.0	
5	72.0	76.0	87.0	44.0	
6	65.0	75.0	76.0	39.0	
7	59.0	84.0	68.0	33.0	
8	41.0	73.0	52.0		
9	41.0	77.0	59.0		
10	62.0	80.0	61.0		

	(cm)
Average snow depth =	65.8
Maximum snow depth =	87.0
Minimum snow depth =	33.0
Standard variation =	14.6
	(inches)
Average snow depth =	25.9
· · · · · · · · · · · · · · · · · · ·	

Maximum snow depth =	34.3
Minimum snow depth =	13.0
Standard variation =	5.7

Snow Sample Depths and Weights

		- 3			
Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
		Ave	age Density =		•
	Average Snow	/Water Equiv	alent (SWE) =		cm H2O
	Average Snow Water Equivalent = inches H20				inches H2O
	•	0 147 4	— · · ·		

Average Snow Water Equivalent = feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID:	ATN Site I			Site Locatior	/Lake ID:	Transect 2
Survey Purpo	ose:	Determine snow depth, SWE Date:			5/2011	Time: 9:00
Location Description:	At stream cros at 004 on Hora	-	rements across dra	ainage. Started 2	00' from ca	mera. Start 003 and finish
Survey objective:		w depth and density for ap Indra travel management.	plication to lake re	0	ther C ervations	old, Dark, Breeze
Latitude:	N 70° 16.391'	Longitude:	W 151° 20.264'	Datu	m: N	AD 83
Elevation:	10 ft	Elevation Datum:	BPMSL	Refe Mark		one
Drainage Basin:	Colville River	Slope Direction:	Flat	Vege Type		owland Wet Sedge Tundra
Slope Angle:	Flat	Access Notes:	Hagglund	Othe		ard surface layer, onsistent throughout
Snow Depth	Probe Type:	T-probe		Snov	v-Survey Te	eam Names:
Snow Tube T	ype:	Adirondack Snow Tube		Jeff	Derry, Hora	cio T

Snow Course Depths (cm)

	1	2	3	4	5
1	34.0	82.0	72.0	73.0	
2	40.0	74.0	80.0	57.0	
3	63.0	74.0	52.0	38.0	
4	57.0	66.0	62.0	38.0	
5	65.0	75.0	66.0	38.0	
6	54.0	66.0	49.0		
7	52.0	63.0	50.0		
8	73.0	48.0	53.0		
9	70.0	72.0	39.0		
10	75.0	78.0	59.0		

	(cm)
Average snow depth =	60.2
Maximum snow depth =	82.0
Minimum snow depth =	34.0
Standard variation =	13.8
	(inches)
Average snow depth =	23.7
	22.2

Maximum snow depth =	32.3
Minimum snow depth =	13.4
Standard variation =	5.4

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)	
		Aver	age Density =			
	Average Snow	Water Equiv	alent (SWE) =		cm H2O	
	Average Snow Water Equivalent =					
		a			-	

Average Snow Water Equivalent = ______ feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID:	ATN			Site Lo	Location/Lake ID: Transect 3		
Survey Purpo	<u>.</u>				: 3/15/2011	Time: nr	
Location Description:	At stream crossing.We at 007 on Horacio's G			rainage. Sta	rted 200' from	camera. Start 005 and finish	
Survey objective:	Determine snow depth and density for application to lake recharge studies, and tundra travel management.					Cold, Breeze	
Latitude:	N 70° 16.356'	Longitude:	W 151° 20.539		Datum:	NAD 83	
Elevation:	7 ft	Elevation Datum:	BPMSL		Reference Markers:	none	
Drainage Basin:	Colville River	Slope Direction:	Flat		Vegetation Type:	Lowland Wet Sedge Tundra	
Slope Angle:	Flat	Access Notes:	Hagglund		Other:	Hard surface layer, consistent throughout	
Snow Depth	Snow Depth Probe Type: T-probe				Snow-Survey	7 Team Names:	
Snow Tube Type: Adirondack Snow Tube Jeff Derry, Horacio T						oracio T	

Snow Course Depths (cm)

	1	2	3	4	5
1	27.0	57.0	45.0	47.0	
2	29.0	42.0	67.0	41.0	
3	45.0	70.0	70.0	44.0	
4	36.0	70.0	67.0	38.0	
5	39.0	70.0	78.0	43.0	
6	23.0	71.0	78.0		
7	49.0	73.0	78.0		
8	91.0	60.0	89.0		
9	35.0	76.0	70.0		
10	33.0	54.0	64.0		

(cm)
56.3
91.0
23.0
18.6
(inches)
22.1

/ Wordgo onow dopun =	
Maximum snow depth =	35.8
Minimum snow depth =	9.1
Standard variation =	7.3

Snow Sample Depths and Weights

Bag # Snow Depth Weight Volume Density Organic Plug (cm) (g) (cm^3) (g/cm^3) (cm) (cm) (g) (cm^3) (g/cm^3) (cm) Average Density = Average Density = cm H2O Average Snow Water Equivalent (SWE) = cm H2O inches H2O Average Snow Water Equivalent = inches H2O feet H2O		1	0						
Average Snow Water Equivalent (SWE) = cm H2O Average Snow Water Equivalent = inches H2O	Bag #		, č		,	Organic Plug (cm)			
Average Snow Water Equivalent (SWE) = cm H2O Average Snow Water Equivalent = inches H2O									
Average Snow Water Equivalent (SWE) = cm H2O Average Snow Water Equivalent = inches H2O									
Average Snow Water Equivalent (SWE) = cm H2O Average Snow Water Equivalent = inches H2O									
Average Snow Water Equivalent = inches H2O		Average Density =							
• • • • • • • • • • • • • • • • • • •		Average Snow	Water Equiv	alent (SWE) =		cm H2O			
Average Snow Water Equivalent =feet H2O			inches H2O						
		Averag		feet H2O					

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID:		ATN	ATN Site Location/Lak			e ID: SWE-DTLB-1	
Survey Purpo	ose:	Determine snow de	pth, SWE	Date:	3/15/2011	Time: nr	
Location Description:	At GPS locatio	n					
Survey objective:	Determine snow depth and density for application to lake recharge studies, and tundra travel management.				Weather Cold, Breeze Observations		
Latitude:	N 70° 17.153'	Longitude:	W 151° 18.641'		Datum:	NAD 83	
Elevation:	7 ft	Elevation Datum:	BPMSL		Reference Markers:	None	
Drainage Basin:	Colville River	Slope Direction:	Flat		Vegetation Type:	Lowland Wet Sedge Tundra	
Slope Angle:	Flat	Access Notes:	Hagglund		Other:	Hard surface layer, consistent throughout	
Snow Depth	Probe Type:	T-probe			Snow-Survey	Team Names:	
Snow Tube T	ype:	Adirondack Snow Tube			Jeff Derry, Ho	oracio T	

Snow Course Depths (cm)

	1	2	3	4	5
1	45.0	43.0	44.0	38.0	47.0
2	41.0	47.0	44.0	36.0	47.0
3	42.0	43.0	44.0	36.0	43.0
4	38.0	24.0	42.0	37.0	36.0
5	39.0	49.0	41.0	41.0	35.0
6	37.0	53.0	42.0	38.0	35.0
7	40.0	49.0	41.0	36.0	45.0
8	37.0	44.0	43.0	37.0	49.0
9	40.0	46.0	43.0	42.0	54.0
10	41.0	44.0	42.0	47.0	51.0

	(cm)
Average snow depth =	42.0
Maximum snow depth =	54.0
Minimum snow depth =	24.0
Standard variation =	5.3
	(inches)
Average snow depth =	16.5
Maximum snow depth =	21.3
Minimum snow depth =	9.4

Standard variation = 2.1

Snow Sample Depths and Weights

	•	0			
Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
P2	42	468.7	1499.4	0.31	
2A	41	466.9	1463.7	0.32	
Т6	41	464.4	1463.7	0.32	
Z5	38	408.1	1356.6	0.30	
T18	38	394.9	1356.6	0.29	
	Average Snow	0.308 12.9	cm H2O		
	Averag	e Snow Wate e Snow Wate	5.09 0.42	inches H2O feet H2O	

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID: Survey Purpose:		ATN Determine snow depth, SWE		Site Location/Lake IE Date: 3/15/2011			
Location Description:	At GPS coord	inates					
Survey objective:		ow depth and density for ap undra travel management.	ge Weather Observations	Cold, Dark, Breeze			
Latitude:	N 70° 17.358' Longitude: W 151° 19.1		W 151° 19.160'	Datum:	NAD 83		
Elevation:	7 ft	Elevation Datum:	BPMSL	Reference Markers:	None		
Drainage Basin:	Colville River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra		
Slope Angle:	Flat	Access Notes:	Hagglund	Other:	Hard surface layer, consistent throughout		
Snow Depth	Probe Type:	T-probe		Snow-Survey	/ Team Names:		
Snow Tube T	уре:	Adirondack Snow Tube		Jeff Derry, H	Derry, Horacio T		

Snow Course Depths (cm)

	1	2	3	4	5
1	44.0	41.0	40.0	44.0	54.0
2	51.0	44.0	48.0	39.0	47.0
3	49.0	47.0	42.0	41.0	50.0
4	42.0	45.0	42.0	42.0	47.0
5	41.0	32.0	41.0	40.0	58.0
6	41.0	51.0	40.0	38.0	52.0
7	43.0	26.0	44.0	41.0	41.0
8	42.0	34.0	47.0	51.0	49.0
9	40.0	37.0	49.0	54.0	46.0
10	41.0	34.0	48.0	56.0	42.0

	(cm)
Average snow depth =	44.0
Maximum snow depth =	58.0
Minimum snow depth =	26.0
Standard variation =	6.2
	(inches)
Average snow depth = _	(inches) 17.3
Average snow depth = _ Maximum snow depth = _	()
· · -	17.3
Maximum snow depth =	17.3 22.8

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
T20	40	340.0	1428.0	0.24	
Z2	38	366.6	1356.6	0.27	
T16	36	333.1	1285.2	0.26	
11B	26	300.1	928.2	0.32	
T4	36	326.6	1285.2	0.25	
	Average Density =				
	Average Snow Water Equivalent (SWE) =			11.8	cm H2O
	Average Snow Water Equivalent =			4.66	inches H2O
	Average Snow Water Equivalent =			0.39	feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: D. Piedra Data QA/QC by: J Derry

Project ID:	Project ID: ATN Survey Purpose: Determine snow depth, SWE		Site Loo	cation/Lake ID	Toolik Lake - Lake	
Survey Purpo			Date:	3/13/2011	Time: 8:30	
Location Description:	Toolik Lake. S	Site #4. Near center of la	ke.			
Survey objective:	Determine snow depth and density for application to lake recharge studies, and tundra travel management.			Weather Observations	Cold, Clear, Breeze	
Latitude:	N 68° 37.926	Longitude	e: W 149° 36.670'		Datum:	NAD 83
Elevation:	-11 ft	Elevation Datum:	BPMSL		Reference Markers:	none
Drainage Basin:	Colville Basin	Slope Direction:	Flat		Vegetation Type:	None, Ice surface
Slope Angle:	Flat	Access Notes:	Hagglund		Other:	
Snow Depth Probe Type: T- probe			Snow-Survey	/ Team Names:		
Snow Tube T	ow Tube Type: Adirondack Snow Tube			Jeff Derry, Horacio T		

Snow Course Depths (cm)

	1	2	3	4	5
1	13.0	24.0	31.0	29.0	19.0
2	13.5	24.0	38.0	26.0	22.0
3	15.0	24.5	41.0	24.0	30.0
4	20.0	23.0	44.0	22.0	36.0
5	18.0	24.0	43.0	23.0	39.0
6	17.5	23.0	42.0	23.0	34.0
7	20.0	24.0	41.0	22.0	31.0
8	22.0	29.5	38.0	22.0	21.0
9	21.0	28.5	32.0	19.0	18.0
10	23.0	30.0	28.0	18.5	21.0

Average snow depth = Maximum snow depth = Minimum snow depth =	(cm) 26.3 44.0 13.0
Standard variation =	8.1
	(inches)
Average snow depth =	10.4
Maximum snow depth =	17.3
Minimum snow depth =	5.1

Standard variation = 3.2

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
T5	18	151.3	642.6	0.24	
T4	30	332.6	1071.0	0.31	
Т3	35	395.0	1249.5	0.32	
T2	18	149.4	642.6	0.23	
T1	30	252.1	1071.0	0.24	
	Average Density =				
	Average Snow	Water Equiv	7.0	cm H2O	
	Average Snow Water Equivalent =			2.75	inches H2O
	Average Snow Water Equivalent =			0.23	feet H2O

Data entered by: D. Piedra	Date: 4/7/2011
Data QA/QC by: J DERRY	Date: 4/19/11

APPENDIX C. LAKE HYDROLOGICAL MEASUREMENTS

The following form reports physical measurements pertaining to lake ice obtained during field sampling.

Lake or Site ID:	L9811 Lake	•		
Local Number:	Survey ID		NAD83	
All measurements unless noted	in feet,	Elevation (ft)	Latitude (dd- mm.mmm)	Longitude (dd-mm.mmm)
		Elevation (it)	N 70° 12.474'	W 151°

Vertical-Datum Corrections, reference survey notes in site folders

ABBREVIATIONS

BOI, bottom of ice

Calib, used to calibrate PT IS, ice surface LB, lake bottom LS, land surface MP, measuring point N/A, not available WS, water surface WD, water depth

Location	Date	Method	Snow Depth	Total Depth IS to LB	Estimated Error	Ice Thickness (IS to BOI)	Freeboard (IS to WS)	WD	Latitude (dd-mm.mmm)	Longitude (dd-mm.mmm)
L9811C	3/14/11	Tape	0.44	6.60	+/- 0.01	4.23	0.20	6.40	N 70° 12.474'	W 151° 10.125'
L9811C	3/14/11	Tape	1.33	6.33	+/- 0.01	3.90	-0.03	6.36	N 70° 12.474'	W 151° 10.125'
L9811C	3/14/11	Tape	0.69	6.40	+/- 0.01	3.41	0.00	6.40	N 70° 12.474'	W 151° 10.125'
L9811E	3/14/11	Tape	0.84	5.90	+/- 0.01	4.92	0.00	5.90	N 70° 12.716'	W 151° 09.091'
L9811N	3/14/11	Tape	0.53	7.28	+/- 0.01	4.16	0.38	6.90	N 70° 12.914'	W 151° 11.320'
L9811S	3/14/11	Tape	0.6	6.53	+/- 0.01	3.58	0.33	6.20	N 70° 12.069'	W 151° 09.621'
L9811W	3/14/11	Tape	1.14	7.34	+/- 0.01	3.33	-0.16	7.50	N 70° 12.373'	W 151° 10.872'

Collected Data Values

Lake-Full Elevation = measured at staff gage or near vertical benchmark after lake outflow ceased following spring snowmelt

Freeboard (FB) = Height of ice level over water level in open hole

Ice Thickness (IT) = Measured distance between top and bottom of ice

Total Depth (TD) = Measured distance from water surface to lake bottom

Estimated Error = Field estimate of water level measurement error

Calculated Values

Ice Surface (IS) Elevation = Water Elevation + Freeboard

Lake or Site ID:	L9817 Lake)					
Local Number:	Survey ID	y ID NAD83					
All measurements	in feet,		Latitude (dd-	Longitude			
unless noted		Elevation (ft)	mm.mmm)	(dd-mm.mmm)			
		40.00	N 70° 14.037'	W 151° 20.012'			

Vertical-Datum Corrections, reference survey notes in site folders

ABBREVIATIONS

BOI, bottom of ice

Calib, used to calibrate PT IS, ice surface LB, lake bottom LS, land surface MP, measuring point N/A, not available WS, water surface WD, water depth

						Ice				
			Snow	Total Depth	Estimated	Thickness	Freeboard		Latitude	Longitude
Location	Date	Method	Depth	IS to LB	Error	(IS to BOI)	(IS to WS)	WD	(dd-mm.mmm)	(dd-mm.mmm)
L9817C	3/14/11	Tape	0.63	6.33	+/- 0.01	3.74	0.03	6.30	N 70° 14.037'	W 151° 20.012'
L9817C	3/14/11	Tape	16.5	6.60	+/- 0.01	3.51	0.07	6.53	N 70° 14.037'	W 151° 20.012'
L9817C	3/14/11	Tape	0.35	6.53	+/- 0.01	3.84	0.23	6.30	N 70° 14.037'	W 151° 20.012'
L9817E	3/14/11	Tape	0.75	8.36	+/- 0.01	2.95	-0.10	8.46	N 70° 14.055'	W 151° 20.035'
L9817N	3/14/11	Tape	1.05	6.43	+/- 0.01	3.25	-0.13	6.56	N 70° 14.107'	W 151° 20.412'
L9817S	3/14/11	Tape	0.83	5.19	+/- 0.01	3.38	-0.03	5.22	N 70° 13.918'	W 151° 20.129'
L9817W	3/14/11	Tape	0.9	4.43	+/- 0.01	3.61	0.03	4.40	N 70° 13.987'	W 151° 20.558'

Collected Data Values

Lake-Full Elevation = measured at staff gage or near vertical benchmark after lake outflow ceased following spring snowmelt

Freeboard (FB) = Height of ice level over water level in open hole

Ice Thickness (IT) = Measured distance between top and bottom of ice

Total Depth (TD) = Measured distance from water surface to lake bottom

Estimated Error = Field estimate of water level measurement error

Calculated Values

Ice Surface (IS) Elevation = Water Elevation + Freeboard

Lake or Site ID:	L9819 Lak	(e		
Local Number:	Survey ID		NAD83	
All measurements i unless noted	in feet,	Elevation (ft)	Latitude (dd- mm.mmm)	Longitude (dd-mm.mmm)
			N 70° 16.477'	W 151° 20.437'

Vertical-Datum Corrections, reference survey notes in site folders

ABBREVIATIONS

BOI, bottom of ice

Calib, used to calibrate PT IS, ice surface LB, lake bottom LS, land surface MP, measuring point N/A, not available WS, water surface WD, water depth

Lcoation	Date	Method	Snow Depth	Total Depth IS to LB	Estimated Error	Ice Thickness (IS to BOI)	Freeboard (IS to WS)	WD	Latitude (dd-mm.mmm)	Longitude (dd-mm.mmm)
L9819N	3/15/11	Таре	0.69	7.45	+/- 0.01	3.95	0.05	7.40	N 70° 16.477'	W 151° 20.437'
L9819E	3/15/11	Tape	0.48	6.70	+/- 0.01	4.13	0.20	6.50	N 70° 16.251'	W 151° 20.912'
L9819S	3/15/11	Tape	0.57	5.75	+/- 0.01	4.10	0.10	5.65	N 70° 15.920'	W 151° 21.112'
L9819W	3/15/11	Tape	0.75	6.60	+/- 0.01	3.50	0.04	6.56	N 70° 16.161'	W 151° 21.731'

Collected Data Values

Lake-Full Elevation = measured at staff gage or near vertical benchmark after lake outflow ceased following spring snowmelt

Freeboard (FB) = Height of ice level over water level in open hole

Ice Thickness (IT) = Measured distance between top and bottom of ice

Total Depth (TD) = Measured distance from water surface to lake bottom

Estimated Error = Field estimate of water level measurement error

Calculated Values

Ice Surface (IS) Elevation = Water Elevation + Freeboard

Lake or Site ID:	L9822 Lal	(e		
Local Number:	Survey ID		NA	D83
All measurements unless noted	in feet,	Elevation (ft)	Latitude (dd- mm.mmm)	Longitude (dd-mm.mmm)
			N 70° 15.200'	W 151° 17.265'

Vertical-Datum Corrections, reference survey notes in site folders

ABBREVIATIONS

BOI, bottom of ice

Calib, used to calibrate PT IS, ice surface LB, lake bottom LS, land surface MP, measuring point N/A, not available WS, water surface WD, water depth

Date	Time	Method	Snow Depth	Total Depth IS to LB	Estimated Error	Ice Thickness (IS to BOI)	Freeboard (IS to WS)	WD	Latitude (dd-mm.mmm)	Longitude (dd-mm.mmm)
L9822C	3/15/11	Таре	0.35	9.30	+/- 0.01	4.28	0.30	9.00	N 70° 15.200'	W 151° 17.265'
L9822E	3/15/11	Tape	0.55	8.37	+/- 0.01	4.21	0.12	8.25	N 70° 15.188'	W 151° 17.074'
L9822N	3/15/11	Tape	0.4	8.40	+/- 0.01	4.28	0.19	8.21	N 70° 15.181'	W 151° 17.481'
L9822S	3/15/11	Tape	0.4	9.60	+/- 0.01	4.22	0.20	9.40	N 70° 15.146'	W 151° 17.084'
L9822W	3/15/11	Tape	0.59	8.55	+/- 0.01	4.48	0.42	8.13	N 70° 15.128'	W 151° 17.431'

Collected Data Values

Lake-Full Elevation = measured at staff gage or near vertical benchmark after lake outflow ceased following spring snowmelt

Freeboard (FB) = Height of ice level over water level in open hole

Ice Thickness (IT) = Measured distance between top and bottom of ice

Total Depth (TD) = Measured distance from water surface to lake bottom

Estimated Error = Field estimate of water level measurement error

Calculated Values

Ice Surface (IS) Elevation = Water Elevation + Freeboard

Lake or Site ID:	L9824 Lak	æ				
Local Number:	Survey ID	urvey ID NAD83				
All measurements i unless noted	n feet,	Elevation (ft)	Latitude (dd- mm.mmm)	Longitude (dd-mm.mmm)		
			N 70° 17.054'	W 151° 16.081'		

Vertical-Datum Corrections, reference survey notes in site folders

ABBREVIATIONS

BOI, bottom of ice

Calib, used to calibrate PT IS, ice surface LB, lake bottom LS, land surface MP, measuring point N/A, not available WS, water surface WD, water depth

Location	Date	Method	Snow Depth	Total Depth IS to LB	Estimated Error	Ice Thickness (IS to BOI)	Freeboard (IS to WS)	WD	Latitude (dd-mm.mmm)	Longitude (dd-mm.mmm)
L9824C	3/7/11	Таре	0.49	9.55	+/- 0.01	3.24	0.13	9.42	N 70° 17.054'	W 151° 16.081'

Collected Data Values

Lake-Full Elevation = measured at staff gage or near vertical benchmark after lake outflow ceased following spring snowmelt

Freeboard (FB) = Height of ice level over water level in open hole

Ice Thickness (IT) = Measured distance between top and bottom of ice

Total Depth (TD) = Measured distance from water surface to lake bottom

Estimated Error = Field estimate of water level measurement error

Calculated Values

Ice Surface (IS) Elevation = Water Elevation + Freeboard

Lake or Site ID:	M0022 Lake	Ð		
Local Number:	Survey ID		NAD83	
All measurements	in feet,		Latitude (dd-	Longitude
unless noted		Elevation (ft)	mm.mmm)	(dd-mm.mmm)
			N 70° 16.404'	W 151° 45.013'

Vertical-Datum Corrections, reference survey notes in site folders

ABBREVIATIONS

BOI, bottom of ice

Calib, used to calibrate PT IS, ice surface LB, lake bottom LS, land surface MP, measuring point N/A, not available WS, water surface WD, water depth

Location	Date	Method	Snow Depth	Total Depth IS to LB	Estimated Error	Ice Thickness (IS to BOI)	Freeboard (IS to WS)	WD	Latitude (dd-mm.mmm)	Longitude (dd-mm.mmm)
M0022C	3/16/11	Таре	0.72	9.35	+/- 0.01	4.04	0.20	9.15	N 70° 16.404'	W 151° 45.013'
M0022C	3/16/11	Tape	0.43	11.19	+/- 0.01	3.18	0.13	11.06	N 70° 16.404'	W 151° 45.013'
M0022E	3/16/11	Tape	0.71	10.01	+/- 0.01	3.64	-0.03	10.04	N 70° 16.141'	W 151° 43.092'
M0022N	3/16/11	Tape	0.47	12.83	+/- 0.01	3.67	0.23	12.60	N 70° 16.362'	W 151° 43.966'
M0022S	3/16/11	Tape	0.89	10.46	+/- 0.01	2.79	-0.07	10.53	N 70° 15.739'	W 151° 43.717'
M0022W	3/16/11	Tape	0.75	9.91	+/- 0.01	3.22	0.00	9.91	N 70° 16.122'	W 151° 44.918'

Collected Data Values

Lake-Full Elevation = measured at staff gage or near vertical benchmark after lake outflow ceased following spring snowmelt

Freeboard (FB) = Height of ice level over water level in open hole

Ice Thickness (IT) = Measured distance between top and bottom of ice

Total Depth (TD) = Measured distance from water surface to lake bottom

Estimated Error = Field estimate of water level measurement error

Calculated Values

Ice Surface (IS) Elevation = Water Elevation + Freeboard

Lake or Site ID:	M9910 La	ke		
Local Number:	Survey ID		NAD83	
All measurements in unless noted	n feet,	Elevation (ft)	Latitude (dd- mm.mmm)	Longitude (dd-mm.mmm)
uniess noteu		Elevation (II)		(uu-mm.mm)
			N 70° 15.175'	W 151° 42.900'

Vertical-Datum Corrections, reference survey notes in site folders

ABBREVIATIONS

BOI, bottom of ice

Calib, used to calibrate PT IS, ice surface LB, lake bottom LS, land surface MP, measuring point N/A, not available WS, water surface WD, water depth

						Ice				
			Snow	Total Depth	Estimated	Thickness	Freeboard		Latitude	Longitude
Location	Date	Method	Depth	IS to LB	Error	(IS to BOI)	(IS to WS)	WD	(dd-mm.mmm)	(dd-mm.mmm)
M9910C	3/16/11	Таре	1.02	7.55	+/- 0.01	3.25	0.00	7.55	N 70° 15.175'	W 151° 42.900'
M9910E	3/16/11	Tape	0.86	6.11	+/- 0.01	2.92	-0.03	6.14	N 70° 15.102'	W 151° 42.521'
M9910N	3/16/11	Tape	0.65	4.98	+/- 0.01	3.08	0.03	4.95	N 70° 15.473'	W 151° 42.537'
M9910S	3/16/11	Tape	1.05	5.94	+/- 0.01	3.58	0.07	5.87	N 70° 14.967'	W 151° 43.192'
M9910W	3/16/11	Tape	0.88	7.32	+/- 0.01	3.77	0.07	7.25	N 70° 15.234'	W 151° 43.161'
							l			

Collected Data Values

Lake-Full Elevation = measured at staff gage or near vertical benchmark after lake outflow ceased following spring snowmelt

Freeboard (FB) = Height of ice level over water level in open hole

Ice Thickness (IT) = Measured distance between top and bottom of ice

Total Depth (TD) = Measured distance from water surface to lake bottom

Estimated Error = Field estimate of water level measurement error

Calculated Values

Ice Surface (IS) Elevation = Water Elevation + Freeboard

Lake or Site ID:	MC7916 Lake					
Local Number:	Survey ID		NAD83			
All measurements ir unless noted	n feet,	Elevation (ft)	Latitude (dd- mm.mmm)	Longitude (dd-mm.mmm)		
unicaa noteu			,	(uu-mm.mm)		
			N 70° 18.229'	W 151° 28.051'		

Vertical-Datum Corrections, reference survey notes in site folders

ABBREVIATIONS

BOI, bottom of ice

Calib, used to calibrate PT IS, ice surface LB, lake bottom LS, land surface MP, measuring point N/A, not available WS, water surface WD, water depth

Location	Date	Method	Snow Depth	Total Depth IS to LB	Estimated Error	Ice Thickness (IS to BOI)	Freeboard (IS to WS)	WD	Latitude (dd-mm.mmm)	Longitude (dd-mm.mmm)
MC7916N	3/15/11	Таре	1.09	7.45	+/- 0.01	4.17	0.00	7.45	N 70° 18.229'	W 151° 28.051'
MC7916S	3/15/11	Tape	0.52	8.14	+/- 0.01	3.90	0.07	8.07	N 70° 17.704'	W 151° 27.338'
MC7916E	3/15/11	Tape	0.69	7.22	+/- 0.01	3.71	0.00	7.22	N 70° 18.031'	W 151° 27.286'
MC7916W	3/15/11	Tape	1.16	8.07	+/- 0.01	4.04	0.10	7.97	N 70° 17.882'	W 151° 28.388'

Collected Data Values

Lake-Full Elevation = measured at staff gage or near vertical benchmark after lake outflow ceased following spring snowmelt

Freeboard (FB) = Height of ice level over water level in open hole

Ice Thickness (IT) = Measured distance between top and bottom of ice

Total Depth (TD) = Measured distance from water surface to lake bottom

Estimated Error = Field estimate of water level measurement error

Calculated Values

Ice Surface (IS) Elevation = Water Elevation + Freeboard

Lake or Site ID:	R0061 Lak	ke 🛛		
Local Number:	Survey ID		NAD83	
All measurements ir unless noted	n feet,	Elevation (ft)	Latitude (dd- mm.mmm)	Longitude (dd-mm.mmm)
			N 70° 10.667'	W 151° 48.556'

Vertical-Datum Corrections, reference survey notes in site folders

ABBREVIATIONS

BOI, bottom of ice

Calib, used to calibrate PT IS, ice surface LB, lake bottom LS, land surface MP, measuring point N/A, not available WS, water surface WD, water depth

Location	Date	Method	Snow Depth	Total Depth IS to LB	Estimated Error	Ice Thickness (IS to BOI)	Freeboard (IS to WS)	WD	Latitude (dd-mm.mmm)	Longitude (dd-mm.mmm)
R0061N	3/14/11	Таре	0.92	5.61	+/- 0.01	3.38	-0.07	5.68	N 70° 10.667'	W 151° 48.556'
R0061S	3/14/11	Tape	0.76	7.17	+/- 0.01	3.25	-0.03	7.20	N 70° 09.895'	W 151° 46.957'
R0061W	3/14/11	Tape	0.48	6.40	+/- 0.01	3.84	0.20	6.20	N 70° 10.155'	W 151° 48.105'
R0061E	3/14/11	Tape	0.85	6.24	+/- 0.01	3.48	0.10	6.14	N 70° 10.340'	W 151° 46.861'

Collected Data Values

Lake-Full Elevation = measured at staff gage or near vertical benchmark after lake outflow ceased following spring snowmelt

Freeboard (FB) = Height of ice level over water level in open hole

Ice Thickness (IT) = Measured distance between top and bottom of ice

Total Depth (TD) = Measured distance from water surface to lake bottom

Estimated Error = Field estimate of water level measurement error

Calculated Values

Ice Surface (IS) Elevation = Water Elevation + Freeboard

Lake or Site ID:	R0066 Lal	ke 🛛		
Local Number:	Survey ID		NAD83	
All measurements in unless noted	ı feet,	Elevation (ft)	Latitude (dd- mm.mmm)	Longitude (dd-mm.mmm)
			N 70° 08.730'	W 151° 45.684'

Vertical-Datum Corrections, reference survey notes in site folders

ABBREVIATIONS

BOI, bottom of ice

Calib, used to calibrate PT IS, ice surface LB, lake bottom LS, land surface MP, measuring point N/A, not available WS, water surface WD, water depth

		1			Ice		1		
		Snow	Total Depth	Estimated	Thickness	Freeboard	1	Latitude	Longitude
Date	Method	Depth	IS to LB	Error	(IS to BOI)	(IS to WS)	WD	(dd-mm.mmm)	(dd-mm.mmm)
3/14/11	Таре	0.55	7.81	+/- 0.01	3.84	0.07	7.74	N 70° 08.730'	W 151° 45.684'
3/14/11	Tape	0.88	7.74	+/- 0.01	1.09	0	7.74	N 70° 08.805'	V 151° 45.297'
3/14/11	Tape	19.25	6.23	+/- 0.01	1.00	-0.07	6.30	N 70° 08.957'	W 151° 46.361'
3/14/11	Tape	0.78	5.74	+/- 0.01	1.09	-0.03	5.77	N 70° 08.553'	W 151° 45.053'
3/14/11	Tape	1	4.63	+/- 0.01	1.12	0.03	4.60	N 70° 08.610'	V 151° 46.285'
	3/14/11 3/14/11 3/14/11 3/14/11	3/14/11 Tape 3/14/11 Tape 3/14/11 Tape 3/14/11 Tape 3/14/11 Tape	Date Method Depth 3/14/11 Tape 0.55 3/14/11 Tape 0.88 3/14/11 Tape 19.25 3/14/11 Tape 0.78	Date Method Depth IS to LB 3/14/11 Tape 0.55 7.81 3/14/11 Tape 0.88 7.74 3/14/11 Tape 19.25 6.23 3/14/11 Tape 0.78 5.74	Date Method Depth IS to LB Error 3/14/11 Tape 0.55 7.81 +/- 0.01 3/14/11 Tape 0.88 7.74 +/- 0.01 3/14/11 Tape 19.25 6.23 +/- 0.01 3/14/11 Tape 0.78 5.74 +/- 0.01	Date Method Snow Depth Total Depth IS to LB Estimated Error Thickness (IS to BOI) 3/14/11 Tape 0.55 7.81 +/- 0.01 3.84 3/14/11 Tape 0.88 7.74 +/- 0.01 1.09 3/14/11 Tape 19.25 6.23 +/- 0.01 1.00 3/14/11 Tape 0.78 5.74 +/- 0.01 1.09	Date Method Snow Depth Total Depth IS to LB Estimated Error Thickness (IS to BOI) Freeboard (IS to WS) 3/14/11 Tape 0.55 7.81 +/- 0.01 3.84 0.07 3/14/11 Tape 0.88 7.74 +/- 0.01 1.09 0 3/14/11 Tape 19.25 6.23 +/- 0.01 1.00 -0.07 3/14/11 Tape 0.78 5.74 +/- 0.01 1.09 -0.03	Date Method Snow Depth Total Depth IS to LB Estimated Error Thickness (IS to BOI) Freeboard (IS to WS) WD 3/14/11 Tape 0.55 7.81 +/- 0.01 3.84 0.07 7.74 3/14/11 Tape 0.88 7.74 +/- 0.01 1.09 0 7.74 3/14/11 Tape 19.25 6.23 +/- 0.01 1.00 -0.07 6.30 3/14/11 Tape 0.78 5.74 +/- 0.01 1.09 -0.03 5.77	Date Snow Depth Total Depth IS to LB Estimated Error Thickness (IS to BOI) Freeboard (IS to WS) Latitude (dd-mm.mm) 3/14/11 Tape 0.55 7.81 +/- 0.01 3.84 0.07 7.74 N70° 08.70° 3/14/11 Tape 0.88 7.74 +/- 0.01 1.09 0 7.74 N70° 08.805° 3/14/11 Tape 19.25 6.23 +/- 0.01 1.00 -0.07 6.30 N70° 08.505° 3/14/11 Tape 0.78 5.74 +/- 0.01 1.09 -0.03 5.77 N70° 08.553°

Collected Data Values

Lake-Full Elevation = measured at staff gage or near vertical benchmark after lake outflow ceased following spring snowmelt

Freeboard (FB) = Height of ice level over water level in open hole

Ice Thickness (IT) = Measured distance between top and bottom of ice

Total Depth (TD) = Measured distance from water surface to lake bottom

Estimated Error = Field estimate of water level measurement error

Calculated Values

Ice Surface (IS) Elevation = Water Elevation + Freeboard

APPENDIX D. WATER QUALITY METER CALIBRATION FORMS

The following forms report results from the meter calibration checks.

Form F-004e: Water Quality Meter Calibration Form

Project ID: ATN Sample Purpose: Lake Water Quality Site Location/Lake ID: Alpine

WATER QUALITY METER INFORMATION

Meter Make:	Hach	Make:	Rcond
Owner:	BLM	S/N:	10035283019

CALIBRATION AND QUALITY ASSURANCE INFORMATION Pre-Sampling QA

Fie-Sampling QA		
Parameter	Date	-

······································							
Parameter	Date	Time	Standard	Lot No.	Exp.	Meter Reading	Pass/Fail
Conductivity 447 µS/cm	3/13/11	17:54	Oakton 447	0P1	Nov-11	447 µS/cm	Pass

Post-Sampling QA

1 6:34	Oakton 447	0P1	Nov-11	446 µS/cm	Pass
					Image:

Field-Form Filled Out By:	D. Piedra	Date:	4/7/2011
QAQC Check By:	K. Hilton	Date:	4/8/2011

Form F-004e: Water Quality Meter Calibration Form

Project ID: ATN Sample Purpose: Lake Water Quality Site Location/Lake ID: Alpine

WATER QUALITY METER INFORMATION

Meter Make:	Hach	Make:	Rcond
Owner:	BLM	S/N:	10035283019

CALIBRATION AND QUALITY ASSURANCE INFORMATION Pre-Sampling QA

Parameter	Date	Time	Standard	Lot No.	Exp.	Meter Reading	Pass/Fail
Conductivity 447 µS/cm	3/15/11	6:34	Oakton 447	0P1	Nov-11	446 µS/cm	Pass

Post-Sampling QA

Parameter	Date	Time	Standard	Lot No.	Exp.	Meter Reading	Pass/Fail
Conductivity 447 µS/cm	3/16/11	6:55	Oakton 447	0P1	Nov-11	449 µS/cm	Pass

Field-Form Filled Out By:	D. Piedra	Date:	4/7/2011
QAQC Check By:	K. Hilton	Date:	4/8/2011

Form F-004e: Water Quality Meter Calibration Form

Project ID: ATN Sample Purpose: Lake Water Quality Site Location/Lake ID: Alpine

WATER QUALITY METER INFORMATION

Meter Make:	Hach	Make:	Rcond
Owner:	BLM	S/N:	110612581022

CALIBRATION AND QUALITY ASSURANCE INFORMATION

Pre-Samp	ling QA

Parameter	Date	Time	Standard	Lot No.	Exp.	Meter Reading	Pass/Fail
Conductivity 447 µS/cm	3/16/11	6:55	Oakton 447	0P1	Nov-11	449 µS/cm	Pass

Post-Sampling QA

Parameter	Date	Time	Standard	Lot No.	Exp.	Meter Reading	Pass/Fail
Conductivity 447 µS/cm	3/21/11	14:00	Oakton 447	0P1	Nov-11	445 µS/cm	Pass

Field-Form Filled Out By:	D. Piedra	Date:	4/7/2011	-
QAQC Check By:	K. Hilton	Date:	4/8/2011	

Form F-004e: Water Quality Meter Calibration Form

Project ID: ATN Sample Purpose: Lake Water Quality Site Location/Lake ID: Alpine

WATER QUALITY METER INFORMATION

Meter Make:	Hach	Make:	RLDO
Owner:	BLM	S/N:	100342592015

CALIBRATION AND QUALITY ASSURANCE INFORMATION Pre-Sampling QA

Fie-Sampling GA							
Parameter	Date	Time	Standard	Lot No.	Exp.	Meter Reading	Pass/Fail
Zero O ₂	3/13/11	19:00	Oakton Zero DO	0R1	Sep-11	0.41 mg/L	Pass

Post-Sampling QA

Parameter	Date	Time	Standard	Lot No.	Exp.	Meter Reading	Pass/Fail
Zero O ₂	3/15/11	6:50	Oakton Zero DO	0R1	Sep-11	0.26 mg/L	Pass

Field-Form Filled Out By:	D. Piedra	Date:	4/7/2011
QAQC Check By:	K. Hilton	Date:	4/8/2011

Form F-004e: Water Quality Meter Calibration Form

Project ID: ATN Sample Purpose: Lake Water Quality Site Location/Lake ID: Alpine

WATER QUALITY METER INFORMATION

Meter Make:	Hach	Make:	RLDO
Owner:	BLM	S/N:	100342592015

CALIBRATION AND QUALITY ASSURANCE INFORMATION Pre-Sampling QA

Fie-Sampling GA							
Parameter	Date	Time	Standard	Lot No.	Exp.	Meter Reading	Pass/Fail
Zero O ₂	3/15/11	6:50	Oakton Zero DO	0R1	Sep-11	0.26 mg/L	Pass

Post-Sampling QA

Parameter	Date	Time	Standard	Lot No.	Exp.	Meter Reading	Pass/Fail
Zero O ₂	3/16/11	6:50	Oakton Zero DO	0R1	Sep-11	0.27 mg/L	Pass

Field-Form Filled Out By:	D. Piedra	Date:	4/7/2011
QAQC Check By:	K. Hilton	Date:	4/8/2011

Form F-004e: Water Quality Meter Calibration Form

Project ID: ATN Sample Purpose: Lake Water Quality Site Location/Lake ID: Alpine

WATER QUALITY METER INFORMATION

Meter Make:	Hach	Make:	RLDO
Owner:	BLM	S/N:	110552592009

CALIBRATION AND QUALITY ASSURANCE INFORMATION

Pre-Sampling QA

Parameter	Date	Time	Standard	Lot No.	Exp.	Meter Reading	Pass/Fail
Zero O ₂	3/13/11	17:54	Oakton Zero DO	0R1	Sep-11	0.42 mg/L	Pass

Post-Sampling QA

Parameter	Date	Time	Standard	Lot No.	Exp.	Meter Reading	Pass/Fail
Zero O ₂	3/15/11	6:44	Oakton Zero DO	0R1	Sep-11	0.26 mg/L	Pass

Field-Form Filled Out By:	D. Piedra	Date:	4/7/2011
QAQC Check By:	K. Hilton	Date:	4/8/2011

Form F-004e: Water Quality Meter Calibration Form

Project ID: ATN Sample Purpose: Lake Water Quality Site Location/Lake ID: Alpine

WATER QUALITY METER INFORMATION

Meter Make:	Hach	Make:	Rcond
Owner:	BLM	S/N:	10035283019

CALIBRATION AND QUALITY ASSURANCE INFORMATION Pre-Sampling QA

i ic dumping an							
Parameter	Date	Time	Standard	Lot No.	Exp.	Meter Reading	Pass/Fail
Zero O ₂	3/15/11	6:44	Oakton Zero DO	0R1	Sep-11	0.26 mg/L	Pass

Post-Sampling QA

Parameter	Date	Time	Standard	Lot No.	Exp.	Meter Reading	Pass/Fail
Zero O ₂	3/21/11	14:00	Oakton Zero DO	0R1	Sep-11	2.5% (0.23mg/L)	Pass
Saturated O ₂	3/21/11	14:00	Bubbled Nanopure	na	na	01.4% (9.35 mg/L	Pass

Field-Form Filled Out By:	D. Piedra	Date:	4/7/2011	
QAQC Check By:	K. Hilton	Date:	4/8/2011	