North Slope, Alaska, Snow-Course and Lake Survey Data: April 2010

Michael Lilly and Sarah Byam preparing to conduct lake ice and water quality measurements. Photo by Jeff Murray, April 2010.

by Jeff Murray, Kristie Hilton, Sarah Byam, Horacio Toniolo, and Michael Lilly

June 2010
Arctic Transportation Networks Project
Report GWS.TR.10.04

North Slope, Alaska, Snow-Course and Lake Survey Data: April 2010

by

Jeff Murray¹, Kristie Hilton¹, Sarah Byam², Horacio Toniolo², and Michael Lilly¹

A report on research sponsored by:

- U.S. Department of Energy
- National Energy Technology Laboratory
- Alaska Department of Natural Resources
- ConocoPhillips Alaska, Inc.
- Bureau of Land Management
- Geo-Watersheds Scientific

June 2010

Arctic Transportation Networks Project

Report Number GWS.TR.10.04

¹Geo-Watersheds Scientific, Fairbanks, AK

²University of Alaska Fairbanks, Fairbanks, AK

Recommended Citation:
Murray, J., Hilton, K., Byam, S., Toniolo, H., and Lilly, M. 2010. North Slope, Alaska, Snow-Course and Lake Survey Data: April 2010. Geo-Watersheds Scientific, Report GWS.TR.10.04, Fairbanks, Alaska. 13 pp. (plus appendices).
Fairbanks, Alaska
June 2010
For additional information write to:
Geo-Watersheds Scientific PO Box 81538

Fairbanks, Alaska 99708 mlilly@gwscientific.com

TABLE OF CONTENTS

TABLE OF CONTENTSiv
LIST OF FIGURESiv
LIST OF TABLESiv
DISCLAIMERv
CONVERSION FACTORS, UNITS, WATER QUALITY UNITS, VERTICAL AND
HORIZONTAL DATUM, ABBREVIATIONS AND SYMBOLSvi
PROJECT COOPERATORSx
ACKNOWLEDGEMENTSx
INTRODUCTION
TRIP OBJECTIVES
PROCEDURES
SELECTED RESULTS
SUMMARY
REFERENCES
LIST OF FIGURES
Figure 1. Snow-course locations visited in April 2010 by ATN and UAF personnel
Figure 2. Map of ADNR snow and soil temperature sampling sites (ADNR, 2010)
Figure 3. Regional average snow depths for ADNR and ATN field campaigns from November
2009 to April 2010.
Figure 4. Regional Comparison of Snow Depth, Density, and SWE measured during April trip. 9
Figure 5. Comparison plot between Jeff Murray (ATN) and Sarah Byam (UAF) snow depth
measurements taken at various locations during April trip
Figure 6. Comparison plot between ATN and ADNR of snow depth measurements taken at co-
located sites from November 2009 to April 2010
Figure 7. Plot of water level at L9312 through April 15, 2010
LIST OF TABLES
Table 1. March snow sampling locations, locations in bold indicate site is co-located with ADNR
snow and soil temperature sampling sites

Table 2. Summary of snow depth, density and SWE values from sites visited by ATN 1	personnel
in April	7
LIST OF APPENDICES	
APPENDIX A. SNOW SURVEY FORMS	A
APPENDIX B. ADNR SNOW DATA	В
APPENDIX C. ADNR SNOW DATA SUMMARY	C
APPENDIX D. ELEVATION SURVEY FORMS	D
APPENDIX E. LAKE HYDROLOGICAL MEASUREMENTS	Е
APPENDIX F. WATER QUALITY SAMPLING FORMS	F
APPENDIX G. WATER QUALITY METER CALIBRATION FORMS	G

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The contents of this report reflect the views of the authors, who are responsible for the accuracy of the data presented herein. The contents of the report do not necessarily reflect the views of policies of DOE or any local sponsor. This work does not constitute a standard, specification, or regulation.

CONVERSION FACTORS, UNITS, WATER QUALITY UNITS, VERTICAL AND HORIZONTAL DATUM, ABBREVIATIONS AND SYMBOLS

Conversion Factors

Multiply	Ву	To obtain
	<u>Length</u>	
inch (in.)	25.4	millimeter (mm)
inch (in.)	2.54	centimeter (cm)
foot (ft)	0.3048	meter (mm)
mile (mi)	1.609	kilometer (km)
	<u>Area</u>	
Acre	43559.826	square feet (ft²)
Acre	0.407	hectare (ha)
Square foot (ft²)	2.590	square mile (mi²)
square mile (mi ²)	2.590	square kilometer (km²)
	<u>Volume</u>	
gallon (gal)	3.785	liter (L)
gallon (gal)	3785	milliliter (mL)
Cubic foot (ft ³)	23.317	liter (L)
Acre-ft	1233	cubic meter (m ³)
	Velocity and Discharge	
foot per day (ft/d)	0.3048	meter per day (m/d)
Square foot per day (ft²/d)	.0929	square meter per day (m ² /d)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m³/sec)
	Hydraulic Conductivity	
foot per day (ft/d)	0.3048	meter per day (m/d)
foot per day (ft/d)	0.00035	centimeter per second
		(cm/sec)
meter per day (m/d)	0.00115	centimeter per second
		(cm/sec)
	Hydraulic Gradient	
foot per foot (ft/ft)	5280	foot per mile (ft/mi)
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km)
_	<u>Pressure</u>	
pound per square inch (lb/in ²)	6.895	kilopascal (kPa)

Units

For the purposes of this report, both English and Metric (SI) units were employed. Common regulations related to tundra travel and water use on the North Slope, Alaska, uses combinations of both English and SI units. The choice of "primary" units employed depended on common reporting standards for a particular property or parameter measured. Whenever possible, the approximate value in the "secondary" units was also provided in parentheses. Thus, for instance, snow depth was reported in inches (in) followed by the value in centimeters (cm) in parentheses.

Physical and Chemical Water-Quality Units:

Temperature:

Water and air temperature is given in degrees Celsius (°C) and in degrees Fahrenheit (°F). Degrees Celsius can be converted to degrees Fahrenheit by use of the following equation:

 $^{\circ}F = 1.8(^{\circ}C) + 32$

Snow Water Equivalent (SWE):

Water content of a given column of snow is determined by knowing the depth of the snowpack and density.

$$SWE = d_s * \rho_s / p_w$$

where:

 $d_s = \text{snow depth}$

 ρ_s = snow density

 p_w = density of water.

Electrical Conductance (Actual Conductivity and Specific Conductance):

In this report conductivity of water is expressed as Actual Conductivity [AC] in microSiemens per centimeter (μ S/cm). This unit is equivalent to micromhos per centimeter. Elsewhere, conductivity is commonly expressed as Specific Conductance at 25°C [SC25] in μ S/cm which is temperature corrected. To convert AC to SC25 the following equation can be used:

viii

$$SC25 = \frac{AC}{1 + r(T - 25)}$$

where:

SC25 = Specific Conductance at 25°C, in μ S/cm

 $AC = Actual Conductivity, in \mu S/cm$

r = temperature correction coefficient for the sample, in $^{\circ}$ C

 $T = \text{temperature of the sample, in }^{\circ}\text{C}$

Milligrams per liter (mg/L) or micrograms per liter (µg/L):

Milligrams per liter is a unit of measurement indicating the concentration of chemical constituents in solution as weight (milligrams) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter. For concentrations less than 7,000 mg/L, the numerical value is the same as for concentrations in parts per million (ppm).

Millivolt (mV):

A unit of electromotive force equal to one thousandth of a volt.

Vertical Datum:

"Sea level" in the following report refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929), a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called *Sea Level Datum of 1929*.

Horizontal Datum:

The horizontal datum for all locations in this report is the North American Datum of 1983 or North American Datum of 1927.

Abbreviations, Acronyms, and Symbols

ACActual conductivity

Alaska Department of Transportation and Public Facilities ADOT&PF

Alaska Department of Natural Resources **ADNR ASTM** American Society for Testing and Materials

Atmospheres atm

Arctic Transportation Networks ATN

Celsius (°C) C Centimeters cm Dissolved oxygen DO

Digital voltage multi-meter DVM

F Fahrenheit (°F)

ft Feet

GWS Geo-Watersheds Scientific

in Inches **Kilograms** kg km²

Square kilometers

kPa Kilopascal

lb/in² Pounds per square inch

Meters m

Milligrams per liter mg/L Micrograms per liter μg/L

 mi^2 Square miles Millimeters mm

μS/cm Microsiemens per centimeter

mV Millivolt

National Geodetic Vertical Datum **NGVD** Natural Resources Conservation Service NRCS **NWIS** National Water Information System

ORP Oxygen-reduction potential

Parts per million ppm Quality assurance QA QC Quality control Sagavanirktok River Sag

SC25 Specific conductance at 25°C

Snow water equivalent **SWE**

University of Alaska Fairbanks UAF

U.S. Army Corps of Engineers, Alaska District **USACE**

U.S. Geological Survey USGS

Water and Environmental Research Center **WERC**

WWW World Wide Web

YSI Yellow Springs Instruments

PROJECT COOPERATORS

The Arctic Transportation Network project covers a large area of the North Slope and benefits from a number of positive partnerships, all contributing to the overall project objectives.

- ➤ U.S. Department of Energy, National Energy Technology Laboratory (NETL)
- ➤ ConocoPhillips Alaska, Inc. (CPA)
- Bureau of Land Management
- ➤ Alaska Department of Natural Resources
- ➤ The Nature Conservancy
- Northern Alaska Environmental Center
- ➤ North Slope Borough
- National Weather Service
- Geo-Watersheds Scientific
- ➤ University of Alaska-Fairbanks
- ➤ Idaho National Laboratory
- ➤ Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE)

ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S. Department of Energy [National Energy and Technology Laboratory] under Award Number DE-FE0001240. Field coordination and logistics support were provided by ConocoPhillips Alaska. Additional support was provided by other project cooperators, North Slope Borough, Bureau of Land Management, Bureau of Ocean Energy Management Regulation and Enforcement, National Weather Service, and Geo-Watersheds Scientific, in the form of financial and in-kind match. Alaska Department of Natural Resources provided data and supporting information for snow survey sites in the study area.

North Slope, Alaska, Snow-Course and Lake Survey Data: April 2010

INTRODUCTION

Geo-Watersheds Scientific (GWS), University of Alaska Fairbanks (UAF), and Idaho National Laboratory (INL), together with project cooperators, initiated a study in October 2009 to collect field data for the development of management tools for various aspects of Arctic Transportation Networks (ATN). Some of the variables collected include data from 10 meteorological and lake stations (such as snow-depth, air and soil temperatures, unfrozen soil moisture, precipitation, wind and radiation data). Data is also collected at selected lakes and reservoirs. Lake data may include snow depth and density data, water-quality and water-level measurements and general observations of watershed conditions.

Snow depth is considered an important variable by regulatory agencies, since tundra travel operations in the Coastal Tundra Area can only commence once a spatially consistent snow depth of 6 in (15 cm) in the coastal plain management areas, or 9 in (23 cm) in the Foothills management areas is maintained. Soil temperatures are also used to manage tundra travel. The soil temperature must reach 23° F (-5°C) at a depth of 12 in (30 cm) (Bader, 2004) to meet tundra travel management criteria. The intent of the soil temperature criteria is to ensure frozen soil strengths are adequate in terms of reaching maximum soil strength. Many meteorological factors determine when these conditions will be met. An established network of meteorological stations and increased manual snow measurements – both amount collected and number of sites visited – will improve the understanding of the timing and amount of snow distribution and will assist in the development of predictive and management tools.

TRIP OBJECTIVES

The April field effort was primarily focused on conducting snow-courses, lake measurements, and verification of meteorological station operations. Snow sampling was performed at colocated ADNR and ATN project sampling sites. ATN project sites will include additional ADNR sites to cover areas that are no longer monitored by ADNR. Concurrent with these

activities, 2L-Pad station installation continued. A workplan was published prior to the April field campaign containing a site-by-site list of objectives (Hilton et al. 2010). Project accomplishments include the following:

1. Toolik NRSC Climate Site and Toolik Lake

- Conduct snow surveys
- Measure lake-ice parameters near shore and in center of lake
- Measure DO and conductivity levels

2. Dalton Highway ADNR Sites

• Conduct snow courses at Sag River ADOT, 318 Mile, 62 Mile, and 30 Mile locations

3. Badami and Eastern BP Sites

- Conduct snow courses at Badami and eastern BP sites
- Measure lake-ice parameters at Badami Reservoir
- Measure DO and conductivity levels at Badami Reservoir
- General maintenance at Badami climate station

4. Central Kuparuk Sites

• Conduct snow courses at central sites

5. Western Kuparuk Sites

- Conduct snow courses at western Kuparuk sites
- 2L Met station work, installed solar panel

6. L9312

- Conduct snow courses on tundra and lake surface
- Measure lake-ice parameters
- L9312 station maintenance

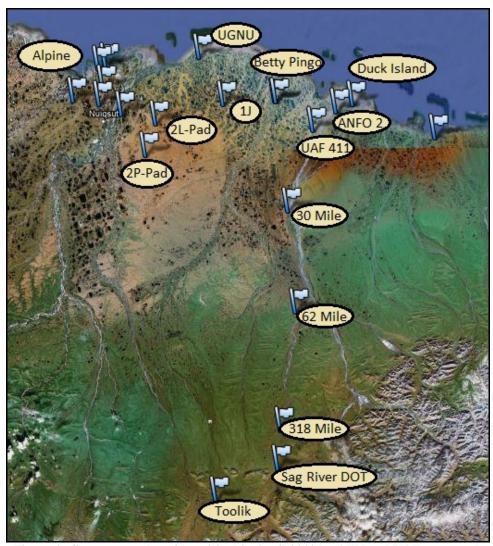


Figure 1. Snow-course locations visited in April 2010 by ATN and UAF personnel.

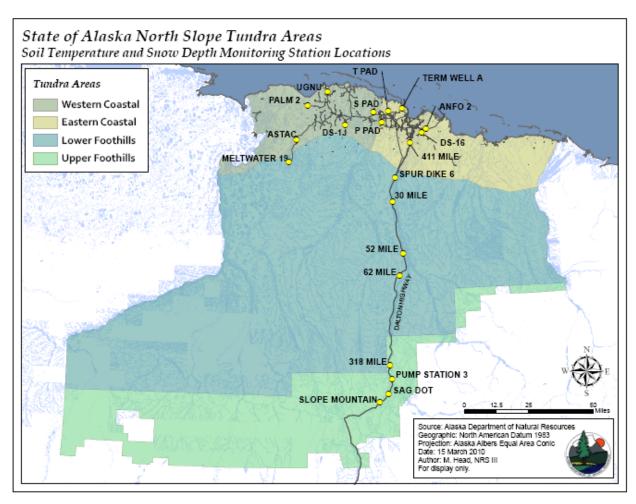


Figure 2. Map of ADNR snow and soil temperature sampling sites (ADNR, 2010).

PROCEDURES

Snow-depth measurements were conducted in "L" shaped patterns on lake surfaces and/or tundra surfaces at predetermined locations according to ATN snow measurement methods (Derry et al. 2009). Snow-depth measurements were taken approximately every 3.3 ft (1 m) for 82 ft (25 m), then turning 90 degrees, and continuing for another 82 ft (25 m). Snow samples were also collected for density measurements with an Adirondack snow sampler. Five densities were collected at each location and averaged to establish a representative density. A number of sampling sites are co-located with ADNR snow and soil sampling sites to compare sampling methods. The ADNR method involves collecting 20 depth measurements along a transect spaced at 1.5 ft (0.5 m) increments and two density measurements collected with a Federal

Sampler (Derry et al. 2009). The intent of co-located sites is to provide data for ADNR and ATN project staff to compare measurement methods at representative sites.

At Lake L9312, holes were drilled through the ice with a gas powered, 10-inch diameter ice auger. Water depth (lake bottom to water surface), freeboard (water surface to top of ice), ice thickness (bottom of ice to top of ice), and snow depth (top of ice to top of snow, measured at the hole where snow was cleared to drill) were measured after the hole was drilled. Water depth was measured with a flexible tape, and freeboard and ice thickness was measured with a folding tape. Snow depth was measured with the same T-handle probe that is used for snow courses. The same physical measurements were also recorded at Toolik Lake and Badami Reservoir.

Water-quality measurements were recorded at Badami Reservoir. Temperature, conductivity, and DO were obtained at depths throughout the water column by using a Hach LDO and a YSI Conductivity Meter. Measurements started just below ice surface and continued at 1 foot intervals until the lake bottom was reached. The LDO sensor, however, did not pass post-check calibration, so those measurements will not be used in any data analysis.

SELECTED RESULTS

Snow courses were conducted at 23 different locations during the April trip. Eleven sites are colocated with ADNR sampling sites (Table 1).

Table 1. March snow sampling locations, locations in bold indicate site is co-located with ADNR snow and soil

temperature sampling sites.

temperature sampling sites.			West
Station	Elevation	North Latitude	Longitude
	Ft	NAD 83	NAD 83
Meltwater 19 (2P-Pad)	200	70° 03.853'	150° 26.779'
Sag River DOT	1,630	68° 45.686'	148° 52.746'
J-Pad	82	70° 16.260'	149° 31.140'
2L-Pad	112	70° 11.481'	150° 19.397'
30 Mile	209	69° 50.333'	148° 45.461'
62 Mile	1,090	69° 25.320'	148° 40.140'
318 Mile	1,280	68° 55.328'	148° 51.004'
ANFO 2	27	70° 14.447'	148° 10.760'
UGNU	16	70° 27.480'	149° 48.540'
UAF 411	78	70° 09.949'	148° 27.307'
P-Pad	33	70° 16.967'	148° 54.807'
Alpine 1	2	70° 25.431'	150° 54.939'
Alpine 2	2	70° 24.564'	151° 00.601'
Alpine 4	2	70° 16.183'	150° 59.730'
Alpine 5	3	70° 13.801'	150° 43.969'
Badami MET	26	70° 08.195'	150° 00.554'
Badami Reservoir – Lake	21	70° 07.775'	146° 59.956'
Badami Reservoir – Tundra	26	70° 07.870'	147° 00.076'
Betty Pingo (NRCS Site)	10	70° 16.772'	148° 53.741'
Duck Island	45	70° 16.206'	147° 59.265'
L9312 - Lake Surface	7	70° 20.008'	150° 57.083'
L9312 - Tundra Surface	7	70° 19.995'	150° 56.918'
NRCS Soil Monitoring Site			
(Toolik Camp)	2,362	68° 37.366'	149° 36.598'

Despite continued freezing temperatures in April, the weather was considerably warmer throughout the majority of this month's field trip. All ice roads were open for travel, but their conditions were beginning to deteriorate. Table 2 provides a summary of the 23 snow sampling sites visited in April. Individual site snow forms can be found in Appendix A.

Table 2. Summary of snow depth, density and SWE values from sites visited by ATN personnel in April.

ATN Snow Data Collected in February					
	Snow	Depth	Density	SV	VE
	cm	in	g/cm^3	cm	in
Eastern Coastal Area					
P Pad	29.10	11.46	0.25	7.20	2.83
Betty Pingo	39.00	15.35	0.293	11.40	4.49
Badami MET	23.50	9.25	0.27	6.30	2.48
Badami Res - Lake	8.00	3.15	0.33	2.70	1.06
Badami Res - Tundra	35.90	14.13	0.32	11.50	4.53
ANFO 2	27.28	10.74	0.28	7.50	2.95
Duck Island	24.80	9.76	0.30	7.40	2.91
UAF 411	41.30	16.26	0.29	11.80	4.65
Area Averages	28.61	11.26	0.29	8.23	3.24
	Wester	n Coastal	Area		
DS-1J	31.10	12.24	0.24	7.50	2.95
UGNU Pad	25.20	9.92	0.32	8.00	3.15
DS-2L (ASTAC)	34.10	13.43	0.24	8.20	3.23
L9312 - Tundra	00.40	45 54	0.04	40.00	4.70
Surface	39.40	15.51	0.31	12.00	4.72
L9312 - Lake Surface	23.70	9.33	0.36	8.50	3.35
Alpine 1	34.10	13.43	0.29	10.00	3.94
Alpine 2	35.90	14.13	0.26	9.40	3.70
Alpine 4	31.20	12.28	0.25	7.90	3.11
Alpine 5	36.40	14.33	0.30	10.90	4.29
Area Averages	32.34	12.73	0.29	9.16	3.60
	Lower	Foothills	Area		
30 Mile	19.40	7.64	0.21	4.10	1.61
62 Mile	29.30	11.54	0.24	6.90	2.72
Meltwater 19 (2-P					
Pad)	29.00	11.42	0.27	7.70	3.03
Area Averages	25.90	10.20	0.24	6.23	2.45
		Foothills /	Area		
318 Mile	45.40	17.87	0.26	11.80	4.65
Sag R. DOT	40.60	15.98	0.20	8.10	3.19
NRCS - Toolik	35.00	13.78	0.21	7.20	2.83
Area Averages	40.33	15.88	0.22	9.03	3.56

Note: Above is ATN collected data but separated according to ADNR Regions

Once a region has been opened to tundra travel, ADNR generally does not continue snow sampling in that region. Thus, there are no reported snow depth values in the Eastern and Western Coastal regions from latter December through April (Appendix C). By April, ADNR only continued to sample in the lower foothills. Snow at only three stations was measured, and only two of those were sites co-located with ATN. Figure 3 shows the regional comparison of snow depths. ATN observed greater snow depths in that region throughout the winter season. Later in this report, reasons for the large differences in snow depths will be offered.

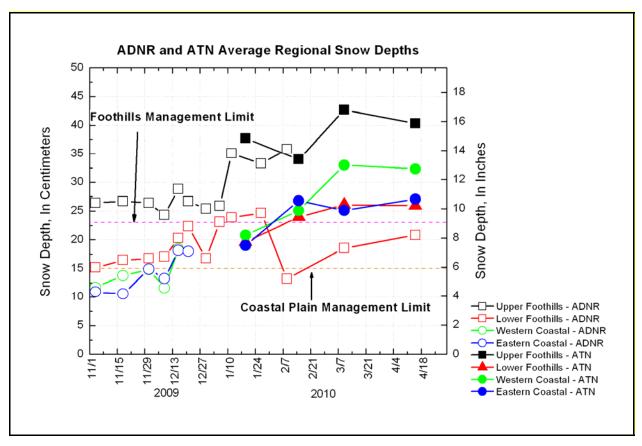


Figure 3. Regional average snow depths for ADNR and ATN field campaigns from November 2009 to April 2010.

The April ATN field trip was the last of the winter season, and Figure 4 shows the final regional averages for snow depth, density, and water equivalent. The Lower Foothills region shows the lowest snow depth and SWE, and it has slightly lower density than both of the coastal regions. Besides the Lower Foothills, the other three regions all had approximately the same SWE. The Upper Foothills had the highest snow depth, and it had the lowest snow density.

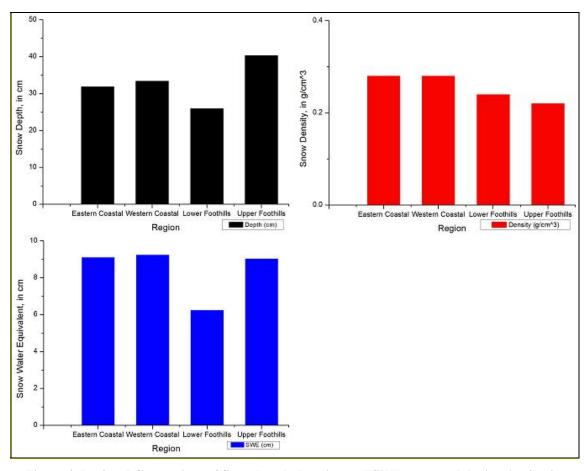


Figure 4. Regional Comparison of Snow Depth, Density, and SWE measured during April trip.

Significant effort was made during the April ATN trip to develop a transferable technique for accurately, and precisely, measuring snow depth by both experienced and inexperienced personnel. As previously stated, ATN and ADNR have been recording different snow depths at co-located snow sites. A goal of this project is to be able to re-create identical measurements by anyone who is measuring snow at a given time. Sarah Byam, a UAF graduate student, attended the April trip and was beneficial in this process. Prior to the trip, she had minimal experience collecting snow depth measurements. Sarah was provided a copy of the GWS Snow Data Collection Methods paper (Derry et al., 2009) and was given basic instructions for collecting snow depth measurements. Figure 5 shows the comparison of Jeff Murray's (ATN) and Sarah Byam's (UAF) snow depth measurements. Both conducted measurements at the same time in the same location. On both Figures 5 and 6, lines were drawn at both 2 cm more and 2 cm less than the equivalent values line. While 2 cm has no regulatory significance, it has been chosen to signify an acceptable range of values for comparing snow depth measurements. Any value that

falls within this range should be considered a successful evaluation of the snow depth. Figure 5 shows that the vast majority of depth measurements fell within the desired range. The measurements were taken with identical equipment at the same time within approximately 5 feet of each other. This comparison was designed so that the only major differences between the two measurements were the actual difference in snow depth and varying terrain below. All other sources of variance were removed to the fullest possible extent. According to Figure 5, it is expected that someone with little experience should be able to reproduce precise snow depth measurements with only minimal instructions and guidance.

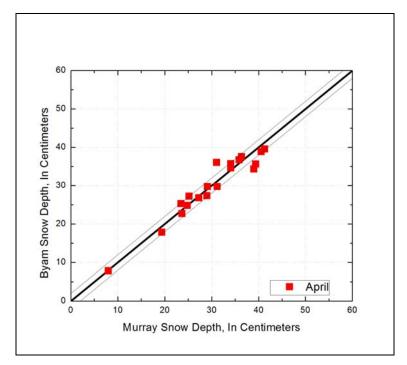


Figure 5. Comparison plot between Jeff Murray (ATN) and Sarah Byam (UAF) snow depth measurements taken at various locations during April trip.

As shown in Figure 6, most of the co-located sites visited throughout the winter resulted in average snow depths that fell outside of the recommended +/- 2 cm range. Several factors, including different equipment, method, time difference, and measurement goal likely accounted for the difference in recorded depths. The procedures section describes the difference in equipment and methods used by both groups to measure snow depth. The difference in probe and number of samples likely results in a difference in depths, and ADNR often performs its sampling on different dates than ATN. Strong wind and snow events can greatly alter the snow

distribution throughout the North Slope, so it should not be surprising if samples conducted on different days result in different depths. Lastly, ATN and ADNR both have different reasons for measuring snow depth. The ATN project collects snow depths in order to calculate both depths and SWE at each location. In order to do this, it is necessary to sample the overall landscape, which includes both snow drifts and troughs. ADNR, on the other hand, samples snow depth for the purpose of protecting the tundra from damage by travelling vehicles. ADNR avoids both drifts and troughs, so they are more likely to find lower overall snow depths than ATN.

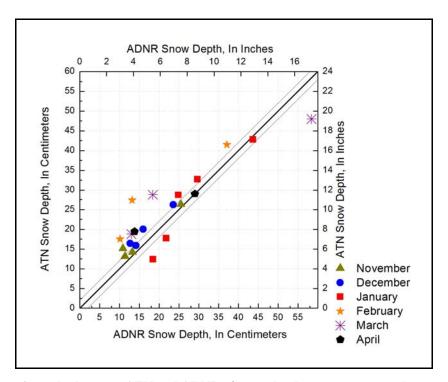


Figure 6. Comparison plot between ATN and ADNR of snow depth measurements taken at co-located sites from November 2009 to April 2010.

Despite continued cold temperatures into the month of April, the water level at L9312 increased from the level measured during the previous month's trip. According to Figure 7, the lake level tends to increase later in the spring/summer. This year, however, the lake level increased between the months of March and April due to an increase in snow accumulation on the lake ice surface.

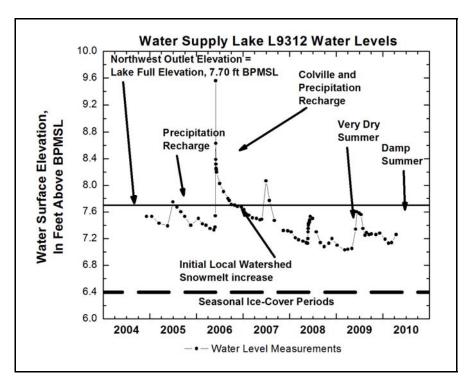


Figure 7. Plot of water level at L9312 through April 15, 2010.

SUMMARY

During the April ATN trip, objectives continued to focus on snow depth and density measurements. Most of the snow sites visited had two sets of snow depth measurements taken, one by ATN and one by UAF personnel. The depths were compared in order to assess the precision of measurements taken by two different people. Lake and ice depth measurements were taken, along with lake level survey and water quality sampling measurements. At 2L-Pad Met station, a solar panel was installed, and it is successfully charging and transmitting data. The collection of snow and lake information related to Arctic transportation networks will help the development of regulatory and user management tools and forecast modeling tools. These tools will help with the increasing development of resources and variation of natural conditions in these extreme Arctic climates.

REFERENCES

Alaska Department of Natural Resources. 2009. Winter Off-road Travel Conditions Monitoring Sampling Protocol. Alaska Department of Natural Resources, Division of Mining Land and Water. 4 pages.

- Bader, H.R. 2004. Tundra Travel Research Project: Validation Study and Management Recommendations. Betula Consulting. 20 pages.
- Derry, J., Lilly, M., Schultz, G., Cherry, J., 2009. Snow Data Collection Methods Related to Tundra Travel, North Slope, Alaska. December 2009, Geo-Watersheds Scientific, Report GWS.TR.09.05, Fairbanks, Alaska, 12 pp (plus appendices).
- Hilton, K., Murray, J., and Lilly, M. 2010. A Workplan for Snow Data Collection, LakeObservations and Meteorological Station Maintenance: April 2010. Geo-WatershedsScientific, Fairbanks, Alaska. 13 pages.

APPENDIX A. SNOW SURVEY FORMS

The following forms report the snow survey information obtained during field sampling.

ADNR J-Pad Project ID: ATN Project Site Location/Lake ID:

Survey Purpo	se:	Determine Snow Depth and SWE Date: 4/14/2010		Time: 14:45		
Location Description:	East of road b		, near soil ther	mistors. GWS measures	to right (as looking	at bore tube from road) and
Survey objective:		o-located snow survey site with DNR sampling site, tundra travel udies and management			Weather Observations	20 F, Windy, Cloudy
Latitude:	N 70° 16.260'		Longitude:	W 149° 31.140'	Datum:	NAD83
Elevation:	82 ft		Elevation Datum:	NGVD29	Reference Markers:	Black PVC Pipe
Drainage Basin:	Unnamed stre Ugnuravik Riv		Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat		Access Notes:	Truck	Other:	2 solid layers, sintering at base
Snow Depth I	Probe Type:		T-Handle Pro	obe	Snow-Survey Team Names:	
Snow Tube T	ype:	Adirondack	Snow Tube		Jeff Murray, Sarah Byam	

Snow Course Depths (cm)

1 36.0 26.0 27.0 39.0 24.0 2 26.0 24.5 23.0 41.5 31.5 3 18.5 45.0 22.0 35.0 35.5
20.0 24.0 20.0 41.0 01.0
3 18.5 45.0 22.0 35.0 35.5
4 17.0 46.0 26.0 35.0 45.0
5 19.0 45.0 29.0 35.5 50.0
6 23.5 51.0 32.0 29.0 42.0
7 25.5 45.0 31.5 19.0 33.0
8 23.0 38.0 32.0 12.0 31.5
9 24.0 37.0 34.0 22.0 26.5
10 19.0 32.0 35.0 22.5 35.0

	(cm)
Average snow depth =	31.1
Maximum snow depth =	51.0
Minimum snow depth =	12.0
Standard deviation =	9.2
	(inches)
Average snow depth =	(inches) 12.3
Average snow depth = Maximum snow depth =	,
, ,	12.3
Maximum snow depth =	12.3 20.1

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
k4	24	245.4	856.8	0.29	
k2	26	197.5	928.2	0.21	
k5	24	225.2	856.8	0.26	
k3	36	350.5	1285.2	0.27	
k1	38	226.7	1356.6	0.17	

Average Density = 0.240

Average Snow Water Equivalent (SWE) = _ 7.5 cm H2O Average Snow Water Equivalent = 2.95 inches H2O Average Snow Water Equivalent = 0.25 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Murray Date: 4/20/10 Data QA/QC by: K. Hilton Date: 4/28/10

Project ID:	ATN Project	Site Location/Lake ID:	ADNR J-Pad - SB	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/14/2010	Time: 14:45	,

Location Description:	East of road before 1J-Pad, near soil thermistors. GWS measures to right (as looking at bore tube from road) and DNR measures to left.						
Survey objective:	Co-located sn studies and m	-	e with DNR sa	mpling site, tundra travel	Weather Observations	20 F, Windy, Cloudy	
Latitude:	N 70° 16.260'		Longitude:	W 149° 31.140'	Datum:	NAD83	
Elevation:	82 ft		Elevation Datum:	NGVD29	Reference Markers:	Black PVC Pipe	
Drainage Basin:	Unnamed stre		Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra	
Slope Angle:	Flat		Access Notes:	Truck	Other:	2 solid layers, sintering at base	
Snow Depth I	Probe Type:		T-Handle Pr	obe	Snow-Survey	Team Names:	
Snow Tube T	ype:	Adirondack	Snow Tube	-	Jeff Murray, S	Sarah Byam	

Snow Course Depths (cm)

	1	2	3	4	5
1	21.0	35.0	35.0	41.5	26.5
2	19.0	32.0	45.0	36.5	30.0
3	24.0	42.0	36.5	36.5	42.0
4	21.5	29.0	38.0	42.0	42.0
5	31.5	35.5	33.5	44.0	44.5
6	24.0	44.5	30.0	36.0	51.5
7	21.0	42.0	29.5	31.5	54.5
8	14.0	55.0	28.0	35.5	50.0
9	23.0	46.0	43.5	40.0	43.0
10	34.0	41.0	42.0	32.0	43.0

Average snow depth = Maximum snow depth =	(cm) 36.0 55.0
Minimum snow depth =	14.0
Standard deviation =	9.3
	(inches)
Avarage angue donth	44.
Average snow depth =	14.2
Maximum snow depth =	14.2 21.7

Data entered by: Jeff Murray
Data QA/QC by: Kristie Hilton
Date: 4/20/10
Date: 4/28/10

Project ID: ATN Project Site Location/Lake ID: ADNR 2L-Pad
Survey Purpose: Determine Snow Depth and SWE Date: 4/16/2010 Time: 11:45

Location Description:	West of road between 2L-Pad and 2N-Pad, near soil thermistors. GWS measures to right (as looking at bore tube from road) and DNR measures to left.					
Survey objective:		•	mpling site, tundra travel mparison between ATN			
Latitude:	N 70° 11.481'	Longitude:	W 150° 19.397'	Datum:	NAD83	
Elevation:	112 ft	Elevation Datum:	NGVD29	Reference Markers:	Just northeast of weather station	
Drainage Basin:	Miluveach River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra	
Slope Angle:	Flat	Access Notes:	Truck	Other:	Thermal construction, packed	
Snow Depth I	Probe Type:	T-Handle Pr	obe	Snow-Survey	Team Names:	
Snow Tube T	ype: Adirono	dack Snow Tube		Jeff Murray, S	Sarah Byam	

Snow Course Depths (cm)

	1	2	3	4	5
1	33.5	45.5	37.0	43.0	26.0
2	37.5	46.0	32.0	47.0	31.0
3	39.0	37.0	32.0	43.0	34.0
4	34.0	30.0	17.0	37.0	36.0
5	31.5	32.0	20.5	37.0	31.0
6	44.0 25.0	25.0	32.5	44.5	35.0
7	39.0	24.0	32.0	36.0	34.5
8	42.0	31.0	31.0	30.5	26.0
9	43.0	28.0	34.0	39.0	23.5
10	41.0	26.0	31.0	29.0	32.0

	(cm)
Average snow depth =	34.1
Maximum snow depth =	47.0
Minimum snow depth =	17.0
Standard deviation =	6.8
	(inches)
Average snow depth =	13.4
Maximum snow depth =	18.5
Minimum snow depth =	6.7
Standard deviation =	2.7

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
a3	34	271.6	1213.8	0.22	
a4	21	199.5	749.7	0.27	
a1	18	150.3	642.6	0.23	
a2	38	339.5	1356.6	0.25	
a5	34	280.4	1213.8	0.23	

Average Density = **0.241**

Average Snow Water Equivalent (SWE) = 8.2 cm H2O

Average Snow Water Equivalent = 3.23 inches H2O

Average Snow Water Equivalent = 0.27 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Murray
Data QA/QC by: K. Hilton
Date: 4/20/10
Date: 6/1/10

Project ID:	ATN Project	Site Location/Lake ID:	ADNR 2L-Pad - SB	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/16/2010	Time: 11:45	

Location Description:	West of road between 2L-Pad and 2N-Pad, near soil thermistors. GWS measures to right (as looking at bore tube from road) and DNR measures to left.					
Survey objective:		•	mpling site, tundra travel mparison between ATN			
Latitude:	N 70° 11.481'	Longitude:	W 150° 19.397'	Datum:	NAD83	
Elevation:	112 ft	Elevation Datum:	NGVD29	Reference Markers:	Just northeast of weather station	
Drainage Basin:	Miluveach River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra	
Slope Angle:	Flat	Access Notes:	Truck	Other:	Thermal construction, packed	
Snow Depth I	Probe Type:	T-Handle Pr	obe	Snow-Survey	Team Names:	
Snow Tube T	ype: Adirono	dack Snow Tube		Jeff Murray, S	Sarah Byam	

Snow Course Depths (cm)

	1	2	3	4	5
1	38.0	36.0	28.5	33.5	37.0
2	42.0	26.0	29.0	44.5	36.5
3	42.0	38.5	35.0	47.0	26.5
4	37.0	34.5	28.5	46.0	33.0
5	34.0	31.0	24.0	45.0	34.0
6	38.0	29.0	24.0	42.0	28.0
7	38.0	26.0	31.5	46.0	34.0
8	37.0	24.5	33.0	40.0	31.0
9	38.0	30.0	31.0	31.0	33.0
10	37.5	35.0	32.0	35.5	36.5

	(cm)
Average snow depth =	34.6
Maximum snow depth =	47.0
Minimum snow depth =	24.0
Standard deviation =	5.9
	(inches)
Average snow depth =	13.6
Maximum snow depth =	18.5
Minimum snow depth =	9.4

Data entered by: Jeff Murray
Data QA/QC by: K. Hilton
Date: 6/1/10

Project ID:	ATN Project	Site Location/Lake ID:	ADNR 2P-Pad	I
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/15/2010	Time: 18	:02

Location Description:	West of road to 2P-Pad, North of 2P Pad, North of soil thermistors. GWS measures to right (as looking at bore tube from road) and DNR measures to left.					
Survey objective:	Co-located snow survey site with DNR sampling site, tundra travel studies and management. Snow depth comparison between ATN Weather Observations:			20 F, Calm, Sunny		
Latitude:	N 70° 03.853'		Longitude:	W 150° 26.779'	Datum:	NAD83
Elevation:	200 ft		Elevation Datum:	NGVD29	Reference Markers:	none
Drainage Basin:	Kachemach F	River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat		Access Notes:	Truck	Other:	Packed, Sintering, 2 layers, Vegetation visible
Snow Depth I	Probe Type:		T-Handle Pr	obe	Snow-Survey T	eam Names:
Snow Tube T	ype:	Adirondad	k Snow Tube		Jeff Murray, Sarah Byam	

Snow Course Depths (cm)

	1	2	3	4	5
1	23.5	22.5	53.5	15.0	24.0
2	19.0	27.0	53.0	19.5	31.5
3	35.5	28.0	48.5	16.5	27.5
4	34.0	22.5	37.5	14.0	28.5
5	20.0	30.5	42.5	18.0	33.0
6	25.5	31.0	37.5	26.5	30.0
7	25.5	31.0	37.0	28.0	20.0
8	26.0	26.5	27.0	25.5	28.0
9	29.0	46.0	28.0	23.5	35.0
10	22.0	50.0	14.0	22.0	28.5

	(cm)
Average snow depth =	29.0
Maximum snow depth =	53.5
Minimum snow depth =	14.0
Standard deviation =	9.5
	(inches)
Average snow depth =	11.4
Maximum snow depth =	21.1
Minimum snow depth =	5.5

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
	(CIII)	(g)	(CITE 3)	(g/ciir 3)	(GIII)
e1	20	178.7	714.0	0.25	
e2	26	259.4	928.2	0.28	
e3	32	378.3	1142.4	0.33	
e4	18	157.7	642.6	0.25	
e5	24	196.0	856.8	0.23	

Average Density = **0.267**

Average Snow Water Equivalent (SWE) = 7.7 cm H2O

Average Snow Water Equivalent = 3.04 inches H2O

Average Snow Water Equivalent = 0.25 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Murray
Data QA/QC by: Kristie Hilton
Date: 4/20/10
Date: 4/28/10

Project ID:	ATN Project	Site Location/Lake ID:	ADNR 2P-Pad - SB	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/15/2010	Time: 18:0	2

Location Description:	West of road to 2P-Pad, North of 2P Pad, North of soil thermistors. GWS measures to right (as looking at bore tube from road) and DNR measures to left.						
Survey objective:		Co-located snow survey site with DNR sampling site, tundra travel studies and management. Snow depth comparison between ATN Weather Observations:					
Latitude:	N 70° 03.853	3'	Longitude:	W 150° 26.779'	Datum:	NAD83	
Elevation:	200 ft		Elevation Datum:	NGVD29	Reference Markers:	none	
Drainage Basin:	Kachemach	River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra	
Slope Angle:	Flat		Access Notes:	Truck	Other:	Packed, Sintering, 2 layers, Vegetation visible	
Snow Depth I	Probe Type:		T-Handle Pro	obe	Snow-Survey T	eam Names:	
Snow Tube T	ype:	Adironda	ck Snow Tube		Jeff Murray, Sa	arah Byam	

Snow Course Depths (cm)

	1	2	3	4	5
1	33.0	26.0	47.0	34.0	23.0
2	31.0	29.0	36.5	28.0	21.5
3	39.0	25.0	37.0	24.0	29.5
4	36.0	21.5	40.0	21.0	14.5
5	23.0	22.5	46.5	16.0	20.5
6	12.0	19.5	41.0	16.0	20.0
7	13.0	23.5	46.0	28.0	20.0
8	16.5	28.5	44.5	14.0	15.0
9	23.0	39.0	45.0	21.0	17.0
10	23.0	39.5	30.0	23.0	21.5

	(cm)
Average snow depth =	27.3
Maximum snow depth =	47.0
Minimum snow depth =	12.0
Standard deviation =	9.9
	(inches)
Average snow depth =	10.7
Maximum snow depth =	18.5
Minimum snow depth =	4.7
Standard deviation =	3.9

Data entered by: Jeff Murray Data QA/QC by: Kristie Hilton Date: 4/20/10 Date: 4/27/10

Project ID:	ATN Project	Site Location/Lake ID:	30 Mile	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/11/2010	Time: 17:30	

Location Description:	Near the black PVC pipe	. GWS stays to	right (as looking at the pipe	e) and DNR stays I	eft.
Survey objective:	SWE and Tundra Travel sampling site)	(Co-located snow	w survey site with DNR	Weather Observations	30 F, Light, Partly cloudy, calm
Latitude:	N 69° 50.337'	Longitude:	W 148° 45.458'	Datum:	NAD 83
Elevation:	209 ft	Elevation Datum:	NGVD29	Reference Markers:	Black PVC Pipe
Drainage Basin:	Sagavanirktok River	Slope Direction:	Flat	Vegetation Type:	Upland Tussock Tundra
Slope Angle:	Flat	Access Notes:	Truck	Other:	Hard Packed Snow, vegetation visible
Snow Depth I	Probe Type:	T-Handle Pr	obe	Snow-Survey	Team Names:
Snow Tube T	ype: Adirondad	k Snow Tube		Michael Lilly,	Jeff Murray, Sarah Byam

Snow Course Depths (cm)

	1	2	3	4	5
1	18.5	17.0	20.0	23.0	31.0
2	19.5	19.0	15.0	20.5	29.0
3	23.0	25.0	7.5	9.0	30.0
4	21.0	17.0	12.0	27.0	25.5
5	22.0	10.5	15.0	20.0	23.0
6	25.0	14.5	18.0	15.0	24.0
7	23.5	13.0	16.0	22.0	21.0
8	21.0	11.0	17.5	22.0	19.5
9	16.0	15.5	20.5	25.0	20.0
10	16.0	12.0	20.5	24.5	15.0

	(cm)
Average snow depth =	19.4
Maximum snow depth =	31.0
Minimum snow depth =	7.5
Standard deviation =	5.3
	(inches)
Average snow depth =	(inches) 7.6
Average snow depth = Maximum snow depth =	,
• •	7.6
Maximum snow depth =	7.6 12.2

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
W2	22	163.8	785.4	0.21	
W4	26	249.6	928.2	0.27	
FB2	18	143.1	642.6	0.22	
D3	15	102.6	535.5	0.19	
F3	19	120.6	678.3	0.18	

Average Density = **0.214**

Average Snow Water Equivalent (SWE) = 4.1 cm H2O

Average Snow Water Equivalent = 1.63 inches H2O

Average Snow Water Equivalent = 0.14 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Murray
Data QA/QC by: Kristie Hilton
Date: 6/1/2010

 Project ID:
 ATN Project
 Site Location/Lake ID:
 30 Mile - SB

 Survey Purpose:
 Determine Snow Depth and SWE
 Date: 4/11/2010
 Time: 17:30

Location Description:	Near the black	PVC pipe.	GWS stays to	right (as looking at the pipe	e) and DNR stays I	eft.	
Survey objective:	SWE and Tun sampling site)	•	Co-located snov	v survey site with DNR	Weather Observations	30 F, Light, Partly cloudy, calm	
Latitude:	N 69° 50.337'		Longitude:	W 148° 45.458'	Datum:	NAD 83	
Elevation:	209 ft		Elevation Datum:	NGVD29	Reference Markers:	Black PVC Pipe	
Drainage Basin:	Sagavanirktok	River	Slope Direction:	Flat	Vegetation Type:	Upland Tussock Tundra	
Slope Angle:	Flat		Access Notes:	Truck	Other:	Hard Packed Snow, vegetation visible	
Snow Depth Probe Type:			T-Handle Pr	T-Handle Probe		Snow-Survey Team Names:	
Snow Tube T	ype:	Adirondack	Snow Tube		Michael Lilly,	Jeff Murray, Sarah Byam	

Snow Course Depths (cm)

	1	2	3	4	5
1	13.0	10.5	13.5	16.0	23.5
2	17.0	18.5	11.5	32.0	27.0
3	27.0	24.0	16.0	11.5	26.0
4	21.5	18.0	12.0	10.0	24.0
5	20.5	11.5	12.5	16.0	24.5
6	19.0	8.5	18.5	15.0	23.0
7	24.0	8.5	16.0	19.0	19.0
8	22.0	7.0	17.5	20.0	21.0
9	18.0	8.0	19.0	21.5	15.0
10	13.0	12.0	21.0	23.0	22.0

Average snow depth =	(cm) 17.8
Maximum snow depth =	32.0
Minimum snow depth =	7.0
Standard deviation =	5.7
	(inches)
Average snow depth =	(inches) 7.0
Average snow depth = Maximum snow depth =	,
	7.0

Data entered by: Jeff Murray
Data QA/QC by: Kristie Hilton
Date: 4/12/2010
Date: 6/1/2010

Project ID:	ATN Project	Site Location/Lake ID:	ADNR 318 Mile	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/16/2010	Time: 21:03	

Location Description:	Off of Dalton Highway. N	lear PVC pipe.(GWS stays to right (as lookir	ng at the pipe) and	DNR stays left.
Survey objective:	SWE and Tundra Travel sampling site)	(Co-located snov	w survey site with DNR	Weather Observations:	10 F, Light wind, Partly cloudy
Latitude:	N 68° 55.328'	Longitude:	W 148° 51.004'	Datum:	NAD 83
Elevation:	1,280 ft	Elevation Datum:	NGVD29	Reference Markers:	Black PVC Pipe
Drainage Basin:	Sagavanirktok River	Slope Direction:	Gently sloping to east	Vegetation Type:	Woody brush, Upland Tussock Tundra
Slope Angle:	Flat	Access Notes:	Truck	Other:	4 cm crust, hor underneath, quick snow
Snow Depth Probe Type: T-Handle Probe			Snow-Survey Team Names:		
Snow Tube T	ype: Adirondad	k Snow Tube		Jeff Murray, Sa	arah Byam

Snow Course Depths (cm)

	1	2	3	4	5
1	60.0	55.0	34.0	47.5	40.0
2	54.0	46.5	39.0	51.0	35.0
3	51.5	44.0	43.5	55.0	25.0
4	58.0	46.5	28.5	51.5	38.0
5	42.0	46.0	41.5	41.0	51.0
6	58.5	44.0	22.5	44.0	45.0
7	48.0	46.5	29.0	38.0	43.5
8	51.5	45.0	46.0	37.0	57.0
9	54.5	41.0	52.5	39.0	55.0
10	57.5	49.5	43.0	32.5	66.0

	(cm)
Average snow depth = _	45.4
Maximum snow depth =	66.0
Minimum snow depth =	22.5
Standard variation =	9.3
	(inches)
Average snow depth = _	17.9
Maximum snow depth =	26.0
Minimum snow depth =	8.9
Standard variation =	3.7

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
j2	46	543.7	1642.2	0.33	
h4	33	285.2	1178.1	0.24	
j1	26	297.5	928.2	0.32	
e5	39	313.0	1392.3	0.22	
f3	49	323.8	1749.3	0.19	

Average Density = 0.261
Average Snow Water Equivalent (SWE) = 11.8 cm H2O
Average Snow Water Equivalent = 4.66 inches H2O
Average Snow Water Equivalent = 0.39 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Murray
Data QA/QC by: Kristie Hilton
Date: 6/1/10

Project ID:	ATN Project	Site Location/Lake ID:	ADNR 62 Mile	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/16/2010	Time: 19:15	

Location Description:	Off of Dalton Highway, top of ridge, west side of highway.					
Survey objective:	SWE and Tundra Travel (Co-located snow survey site with DNR Sampling site) Weather Observations:					
Latitude:	N 69° 25.320)'	Longitude:	W 148° 40.140'	Datum:	NAD 83
Elevation:	1,090 ft		Elevation Datum:	NGVD29	Reference Markers:	Stakes in ground
Drainage Basin:	Toolik River		Slope Direction:	Ridge Top	Vegetation Type:	Tussock Tundra
Slope Angle:	Flat		Access Notes:	Truck	Other:	Sintering to surface, melting
Snow Depth Probe Type:		T-Handle Pr	T-Handle Probe		eam Names:	
Snow Tube Type: Adirondack S			Snow Tube		Jeff Murray, Sa	arah Byam

Snow Course Depths (cm)

	1	2	3	4	5
1	25.0	28.0	20.5	25.0	29.0
2	35.0	26.0	16.0	41.5	39.5
3	27.0	23.0	29.0	21.0	41.0
4	21.0	37.5	58.5	27.5	30.5
5	31.0	23.0	32.5	23.0	41.0
6	28.0	25.5	36.0	25.0	29.5
7	25.0	19.0	23.5	30.0	35.0
8	30.5	37.5	18.5	39.5	25.5
9	33.0	17.5	29.0	22.5	28.0
10	30.5	33.0	37.0	28.0	26.0

	(cm)
Average snow depth = _	29.3
Maximum snow depth =	58.5
Minimum snow depth =	16.0
Standard variation =	7.7
	(inches)
Average snow depth = _	11.5
Maximum snow depth =	23.0
Minimum snow depth =	6.3
Standard variation =	3.0

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
	(CIII)	(g)	(GIIF 3)	(g/cnr·5)	(CIII)
z2	25	203.5	892.5	0.23	
h2	22	205.1	785.4	0.26	
n1	24	214.1	856.8	0.25	
n3	23	150.5	821.1	0.18	
:)2	23	171.4	821.1	0.21	

Average Density = 0.226

Average Snow Water Equivalent (SWE) = 6.6 cm H2O

Average Snow Water Equivalent = 2.61 inches H2O

Average Snow Water Equivalent = 0.22 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Murray
Data QA/QC by: Kristie Hilton
Date: 4/20/10
Date: 4/28/10

 Project ID:
 ATN
 Site Location/Lake ID:
 Alpine 1

 Survey Purpose:
 Determine snow depth, SWE
 Date: 4/15/2010
 Time: 13:24

Location Description:	Along Alpine	ice road. Pr	oposed snow de	epth sampling location north	east of road.	
Survey objective:	Determine snow depth and density for application to lake recharge studies, and tundra travel management.			Weather Observations	10 F, Calm, Scattered clouds	
Latitude:	N 70° 25.383	3'	Longitude:	W 150° 54.944'	Datum:	NAD 83
Elevation:	3 ft.		Elevation Datum:	NGVD29	Reference Markers:	Orange stakes
Drainage Basin:	Colville Rive	r	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat		Access Notes:	Truck	Other:	Track through site, drifting from wind shadow, packed
Snow Depth Probe Type:		T-probe	T-probe		Snow-Survey Team Names:	
Snow Tube Type: Adirondack		Snow Tube	now Tube		Jeff Murray, Sarah Byam	

Snow Course Depths (cm)

	1	2	3	4	5
1	35.0	40.0	36.5	28.0	32.5
2	40.0	46.0	29.0	26.0	29.0
3	35.5	55.0	33.0	27.0	25.0
4	38.0	43.0	35.0	28.5	29.5
5	31.0	43.0	34.0	33.5	20.0
6	23.5	37.0	28.5	34.5	34.0
7	33.0	38.0	30.0	35.5	35.0
8	34.5	40.0	31.5	30.0	42.0
9	30.0	42.0	29.0	32.5	38.0
10	35.0	43.0	28.5	33.0	36.0

Average snow depth =	(cm) 34.1
Maximum snow depth =	55.0
Minimum snow depth =	20.0
Standard variation =	6.3
	(inches)
Average snow depth =	13.4
Maximum snow depth =	21.7
Minimum snow depth =	7.9
Standard variation =	2.5

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
i1	32	336.1	1142.4	0.29	
i3	44	485.3	1570.8	0.31	
i4	30	277.3	1071.0	0.26	
i5	31	324.2	1106.7	0.29	
i2	33	368.6	1178.1	0.31	

Average Density = 0.294

Average Snow Water Equivalent (SWE) = 10.0 cm H2O

Average Snow Water Equivalent = 3.95 inches H2O

Average Snow Water Equivalent = 0.33 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Murray
Data QA/QC by: Kristie Hilton
Date: 4/20/10
Date: 4/28/10

Project ID:	ATN	Site Location/Lake ID:	Alpine 1 - SB
Survey Purpose:	Determine snow depth, SWE	Date: 4/15/2010	Time: 13:24

Location Description:	Along Alpine ice roa	d. Proposed snow de	epth sampling location north	east of road.	
Survey objective:	Determine snow dep studies, and tundra		plication to lake recharge	Weather Observations	10 F, Calm, Scattered clouds
Latitude:	N 70° 25.383'	Longitude:	W 150° 54.944'	Datum:	NAD 83
Elevation:	3 ft.	Elevation Datum:	NGVD29	Reference Markers:	Orange stakes
Drainage Basin:	Colville River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat	Access Notes:	Truck	Other:	Track through site, drifting from wind shadow, packed
Snow Depth I	Probe Type:	T-probe		Snow-Survey	Team Names:
Snow Tube T	ype: Adiro	ndack Snow Tube		Jeff Murray, S	Sarah Byam

Snow Course Depths (cm)

	1	2	3	4	5
1	35.0	41.5	33.0	27.0	37.0
2	42.0	42.5	33.5	28.0	36.0
3	44.5	43.5	30.0	24.0	34.0
4	36.5	42.0	31.0	31.0	33.5
5	34.0	42.0	33.0	33.0	39.0
6	39.5	39.0	29.5	34.0	43.0
7	39.5	36.0	30.0	33.5	38.0
8	38.0	41.0	31.0	33.0	40.0
9	34.0	39.0	31.5	31.0	35.0
10	52.0	36.0	28.0	33.0	34.5

	(cm)
Average snow depth =	35.7
Maximum snow depth =	52.0
Minimum snow depth =	24.0
Standard variation =	5.3
	(inches)
Average snow depth =	(inches) 14.1
Average snow depth = Maximum snow depth =	,
= ,	<u>14.1</u>
Maximum snow depth =	14.1 20.5

Arctic Transportation Networks Project

Form F-012: Snow Survey Form

 Project ID:
 ATN
 Site Location/Lake ID:
 Alpine 2

 Survey Purpose:
 Determine snow depth, SWE
 Date: 4/15/2010
 Time: 14:15

Location Description:	Along ice road. Pr	oposed snow depth sa	mpling location west of the r	oad.	
Survey objective:		epth and density for apparts.	plication to lake recharge	Weather Observations	10 F, Calm, Sunny
Latitude:	N 70° 24.564'	Longitude:	W 151° 00.482'	Datum:	NAD 83
Elevation:	2 ft.	Elevation Datum:	NGVD29	Reference Markers:	Orange stakes
Drainage Basin:	Colville River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat	Access Notes:	Truck	Other:	Packed, Hard surface, Heavy sintering
Snow Depth I	Probe Type:	T-probe		Snow-Survey	Team Names:
Snow Tube T	ype: Adir	ondack Snow Tube		Jeff Murray, S	Sarah Byam

Snow Course Depths (cm)

	1	2	3	4	5
1	26.0	33.0	43.0	35.5	30.0
2	28.5	23.5	41.0	42.0	33.0
3	31.5	33.0	40.0	37.0	34.5
4	28.0	31.5	37.0	44.0	41.5
5	32.0	34.0	40.0	47.0	37.0
6	32.5	36.0	33.0	49.5	38.0
7	35.0	37.0	35.0	39.0	26.0
8	33.0	43.5	39.0	48.0	35.0
9	31.5	44.0	39.0	38.0	31.0
10	32.0	42.0	36.0	34.0	24.0

Average snow depth = Maximum snow depth = Minimum snow depth = Standard variation =	(cm) 35.9 49.5 23.5 5.9
otandara variation = _	
	(inches)
Average snow depth =	14.1
Maximum snow depth =	19.5
Minimum snow depth =	9.3
Standard variation =	2.3

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
j5	34	325.9	1213.8	0.27	
j4	32	274.7	1142.4	0.24	
j1	36	321.8	1285.2	0.25	
j3	29	258.9	1035.3	0.25	
j2	31	325.3	1106.7	0.29	

Average Density = **0.261**Average Snow Water Equivalent (SWE) = **9.4** cm H2O

Average Snow Water Equivalent = 3.68 inches H2O
Average Snow Water Equivalent = 0.31 feet H2O

SWE = avg. snow depth*(density snow/density water)

Project ID:	ATN	Site Location/Lake ID:	Alpine 2 - SB
Survey Purpose:	Determine snow depth, SWE	Date: 4/15/2010	Time: 14:15

Location Description:	Along ice road. P	roposed snow depth sai	mpling location west of the r	oad.	
Survey objective:		epth and density for apparts and travel management.	olication to lake recharge	Weather Observations	10 F, Calm, Sunny
Latitude:	N 70° 24.564'	Longitude:	W 151° 00.482'	Datum:	NAD 83
Elevation:	2 ft.	Elevation Datum:	NGVD29	Reference Markers:	Orange stakes
Drainage Basin:	Colville River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat	Access Notes:	Truck	Other:	Packed, Hard surface, Heavy sintering
Snow Depth I	Probe Type:	T-probe		Snow-Survey	Team Names:
Snow Tube T	ype: Adi	rondack Snow Tube		Jeff Murray, S	Sarah Byam

Snow Course Depths (cm)

	1	2	3	4	5
1	31.5	34.0	40.0	36.5	39.0
2	30.0	28.5	33.0	37.5	29.5
3	28.0	27.0	44.0	36.0	25.0
4	28.5	33.0	47.0	40.0	29.0
5	35.0	26.0	46.0	41.5	41.5
6	32.0	34.0	49.0	49.0	35.0
7	32.0	34.0	42.0	46.0	41.0
8	34.0	30.5	43.0	44.0	43.0
9	35.0	29.0	37.0	42.0	40.0
10	35.0	43.0	41.5	49.0	29.5

	(cm)
Average snow depth =	36.7
Maximum snow depth =	49.0
Minimum snow depth =	25.0
Standard variation =	6.6
	(inches)
Average snow depth =	(inches) 14.5
Average snow depth = Maximum snow depth =	,
· .	14.5
Maximum snow depth =	14.5 19.3

Arctic Transportation Networks Project

Form F-012: Snow Survey Form

Project ID:ATNSite Location/Lake ID:Alpine 4Survey Purpose:Determine snow depth, SWEDate: 4/15/2010Time: 15:14

Location Description:	Along ice road. Proposed snow depth sampling location west of the road.						
Survey objective:	Determine snow depth and density for application to lake recharge Weather observations 20 F, Calm, Sunny Observations						
Latitude:	N 70° 16.183'	Longitude:	W 150° 59.730'	Datum:	NAD 83		
Elevation:	2 ft.	Elevation Datum:	NGVD29	Reference Markers:	Orange stakes		
Drainage Basin:	Colville River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra		
Slope Angle:	Flat	Access Notes:	Truck	Other:	Polygon topography, vegetation visible		
Snow Depth I	Probe Type:	T-probe		Snow-Survey	Team Names:		
Snow Tube T	ype: Adir	ondack Snow Tube		Jeff Murray, S	Sarah Byam		

Snow Course Depths (cm)

	1	2	3	4	5
1	32.0	21.0	52.0	24.0	35.5
2	25.0	16.0	32.0	29.0	37.5
3	31.0	14.0	46.0	21.5	37.5
4	39.0	18.5	57.5	24.0	34.0
5	28.0	15.0	49.0	20.5	30.0
6	32.5	21.0	49.0	21.5	38.0
7	36.0	23.5	52.0	39.0	20.0
8	17.0	28.0	53.0	37.0	18.0
9	14.0	33.0	39.0	28.0	26.0
10	8.0	46.5	35.0	41.0	33.0

Average snow depth =	(cm) 31.2
Maximum snow depth =	57.5
Minimum snow depth =	8.0
Standard variation =	11.7
	(inches)
Average snow depth =	12.3
Maximum snow depth =	22.6
Minimum snow depth =	3.1
Standard variation =	4.6

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
	(CITI)	(9)	(0111-0)	(9/0111-0)	(0111)
z1	19	174.5	678.3	0.26	
z5	32	347.6	1142.4	0.30	
z3	44	381.5	1570.8	0.24	
z2	27	200.3	963.9	0.21	
z4	21	187.0	749.7	0.25	

Average Density = 0.252

Average Snow Water Equivalent (SWE) = 7.9 cm H2O

Average Snow Water Equivalent = 3.10 inches H2O

Average Snow Water Equivalent = 0.26 feet H2O

SWE = avg. snow depth*(density snow/density water)

Project ID:	ATN	Site Location/Lake ID:	Alpine 4 - SB
Survey Purpose:	Determine snow depth, SWE	Date: 4/15/2010	Time: 15:14

Location Description:	Along ice road. Proposed snow depth sampling location west of the road.						
Survey objective:	Determine snow depth and density for application to lake recharge Weather 20 F, Calm, Sunny observations						
Latitude:	N 70° 16.183'	Longitude:	W 150° 59.730'	Datum:	NAD 83		
Elevation:	2 ft.	Elevation Datum:	NGVD29	Reference Markers:	Orange stakes		
Drainage Basin:	Colville River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra		
Slope Angle:	Flat	Access Notes:	Truck	Other:	Polygon topography, vegetation visible		
Snow Depth I	Probe Type:	T-probe		Snow-Survey	Team Names:		
Snow Tube T	ype: Adiro	ondack Snow Tube		Jeff Murray, S	Sarah Byam		

Snow Course Depths (cm)

	1	2	3	4	5
1	36.0	13.0	26.0	33.0	28.0
2	40.0	15.0	31.0	22.0	29.0
3	31.0	13.0	22.0	20.0	30.5
4	33.5	18.0	43.0	22.0	34.0
5	34.5	39.0	48.0	42.0	44.0
6	27.0	31.0	41.5	30.0	34.5
7	25.0	26.5	48.5	27.0	34.0
8	22.0	21.0	39.0	20.0	31.5
9	21.0	29.0	28.0	28.0	24.0
10	26.0	26.0	27.0	42.0	26.0

Average snow depth =	(cm) 29.7
Maximum snow depth =	48.5
Minimum snow depth =	13.0
Standard variation =	8.6
Average snow depth =	(inches) 11.7
Average snow depth = Maximum snow depth =	,
•	<u>11.7</u>
Maximum snow depth =	11.7 ´ 19.1

Arctic Transportation Networks Project

Form F-012: Snow Survey Form

Project ID:ATNSite Location/Lake ID:Alpine 5Survey Purpose:Determine snow depth, SWEDate: 4/15/2010Time: 16:30

Location Description:	Along Alpin	e ice road.	Proposed snow de	epth sampling location north	east of road and o	on a lake.
Survey objective:	Determine snow depth and density for application to lake recharge studies, and tundra travel management. Weather 20 F, Calm, Sunny, Observations Scattered clouds					
Latitude:	N 70° 13.80	01'	Longitude:	W 150° 43.969'	Datum:	NAD 83
Elevation:	3 ft.		Elevation Datum:	NGVD29	Reference Markers:	Between Ice Road and Pipeline
Drainage Basin:	Colville Riv	er	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat		Access Notes:	Truck	Other:	Density pts 4 & 5 were over ice
Snow Depth I	Probe Type:		T-probe		Snow-Survey	Team Names:
Snow Tube T	уре:	Adironda	ack Snow Tube		Jeff Murray, S	Sarah Byam

Snow Course Depths (cm)

	1	2	3	4	5
1	51.0	46.5	39.0	29.0	28.0
2	55.0	50.0	29.0	33.0	35.0
3	51.0	42.0	29.0	26.5	42.0
4	45.0	41.0	30.0	29.0	46.0
5	52.0	42.0	42.5	32.0	39.0
6	54.5	34.0	34.0	32.0	33.0
7	50.0	29.0	24.0	31.0	32.0
8	50.0	31.0	20.0	30.0	26.0
9	49.5	33.5	15.0	28.0	29.5
10	49.0	29.0	28.0	28.0	34.0

Average snow depth = Maximum snow depth = Minimum snow depth = Standard variation =	(cm) 36.4 55.0 15.0 9.7
Average snow depth =	(inches) 14.3
Maximum snow depth =	21.7
Minimum snow depth = Standard variation =	5.9 3.8

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
b2	50	582.5	1785.0	0.33	
b1	36	316.6	1285.2	0.25	
b4	34	343.1	1213.8	0.28	
x2	29	373.6	1035.3	0.36	
b3	24	243.4	856.8	0.28	

Average Density = 0.300

Average Snow Water Equivalent (SWE) = 10.9 cm H2O

Average Snow Water Equivalent = 4.30 inches H2O

Average Snow Water Equivalent = 0.36 feet H2O

SWE = avg. snow depth*(density snow/density water)

Project ID:	ATN	Site Location/Lake ID:	Alpine 5 - SB
Survey Purpose:	Determine snow depth, SWE	Date: 4/15/2010	Time: 16:30

Location Description:	Along Alpir	e ice road.	Proposed snow de	epth sampling location north	east of road and o	on a lake.
Survey objective:			and density for apposed management.	Weather Observations	20 F, Calm, Sunny, Scattered clouds	
Latitude:	N 70° 13.80	01'	Longitude:	W 150° 43.969'	Datum:	NAD 83
Elevation:	3 ft.		Elevation Datum:	NGVD29	Reference Markers:	Between Ice Road and Pipeline
Drainage Basin:	Colville River		Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat		Access Notes:	Truck	Other:	Density pts 4 & 5 were over ice
Snow Depth Probe Type:		T-probe	T-probe		Snow-Survey Team Names:	
Snow Tube T	Type: Adirondack Snow Tube				Jeff Murray, S	Sarah Byam

Snow Course Depths (cm)

	1	2	3	4	5
1	50.0	48.0	34.0	23.0	29.5
2	52.0	49.0	25.5	29.0	27.0
3	51.5	56.0	21.5	26.5	31.0
4	50.5	40.0	34.0	27.0	33.5
5	48.0	43.5	42.0	35.0	39.0
6	55.0	36.5	35.5	28.0	40.0
7	56.0	32.0	32.0	28.0	42.0
8	58.0	34.0	33.0	32.5	46.5
9	45.0	32.5	23.0	33.0	44.5
10	47.5	35.0	22.0	31.0	27.0

Average snow depth = Maximum snow depth = Minimum snow depth = Standard variation =	(cm) 37.5 58.0 21.5 10.1
Average snow depth =	(inches)
Maximum snow depth = Minimum snow depth =	22.8
Standard variation =	4.0

Project ID:	ATN Project	Site Location/Lake ID:	ANFO2	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/12/2010	Time: 16:15	

Location Description:	Off road to the North. Near Duck Island gravel pit. Close to PVC pipe GWS stays to right (as looking at pipe) and DNR stays left.							
Survey objective:	SWE and Tundra Travel (Co-located snow survey site with DNR sampling site)					20 F, Light Winds, Scattered Clouds		
Latitude:	N 70° 14.46	0'	Longitude:	W 148° 10.800'	Datum:	NAD 83		
Elevation:	27 ft.		Elevation Datum:	NGVD29	Reference Markers:	Black PVC pipe		
Drainage Basin:	Sagavanirkt	ok River	Slope Direction:	Flat	Vegetation Type:	Upland Tussock Tundra		
Slope Angle:	Flat		Access Notes:	Truck	Other:	multi wind packed layers, long grass		
Snow Depth Probe Type: T-Hand		T-Handle Pr	-Handle Probe		Snow-Survey Team Names:			
Snow Tube T	ow Tube Type: Adirondack Snow Tube				Jeff Murray,	Sarah Byam		

Snow Course Depths (cm)

1 29.5 33.0 31.0 17.0 27.0 2 24.5 40.0 25.0 19.0 24.5 3 26.5 38.5 27.5 21.0 27.0 4 23.0 40.5 26.0 17.0 27.5		1	2	3	4	5
3 26.5 38.5 27.5 21.0 27.0	1	29.5	33.0	31.0	17.0	27.0
20.0 27.0 27.0	2	24.5	40.0	25.0	19.0	24.5
4 23.0 40.5 26.0 17.0 27.5	3	26.5	38.5	27.5	21.0	27.0
	4	23.0	40.5	26.0	17.0	27.5
5 24.0 39.0 25.0 22.0 24.0	5	24.0	39.0	25.0	22.0	24.0
6 24.0 37.0 22.0 25.0 24.0	6	24.0	37.0	22.0	25.0	24.0
7 29.0 34.5 20.0 21.5 27.0	7	29.0	34.5	20.0	21.5	27.0
8 35.0 32.5 23.5 17.0 29.0	8	35.0	32.5	23.5	17.0	29.0
9 36.0 33.0 21.5 25.0	9	36.0	33.0	21.5	25.0	
10 35.0 31.0 20.0 27.5	10	35.0	31.0	20.0	27.5	

	(cm)
Average snow depth =	27.3
Maximum snow depth =	40.5
Minimum snow depth =	17.0
Standard deviation =	6.3
	(inches)
Average snow depth =	10.7
Maximum snow depth =	15.9
Minimum snow depth =	6.7
Standard deviation =	2.5

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
x1	21	178.2	749.7	0.24	
x4	38	406.9	1356.6	0.30	
f1	18	198.2	642.6	0.31	
w3	19	189.2	678.3	0.28	
fb4	34	310.1	1213.8	0.26	

Average Density = **0.276**

Average Snow Water Equivalent (SWE) = 7.5 cm H2O

Average Snow Water Equivalent = 2.96 inches H2O

Average Snow Water Equivalent = 0.25 feet H2O

SWE = avg. snow depth*(density snow/density water)

Project ID:	ATN Project	Site Location/Lake ID:	ANFO2 - SB	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/12/2010	Time: 16:15	

Location Description:	Off road to the North. Near Duck Island gravel pit. Close to PVC pipe GWS stays to right (as looking at pipe) and DNR stays left.							
Survey objective:	SWE and Tundra Travel (Co-located snow survey site with DNR sampling site)					20 F, Light Winds, Scattered S Clouds		
Latitude:	N 70° 14.460)'	Longitude:	W 148° 10.800'	Datum:	NAD 83		
Elevation:	27 ft.		Elevation Datum:	NGVD29	Reference Markers:	Black PVC pipe		
Drainage Basin:	Sagavanirkto	k River	Slope Direction:	Flat	Vegetation Type:	Upland Tussock Tundra		
Slope Angle:	Flat		Access Notes:	Truck	Other:	multi wind packed layers, long grass		
Snow Depth Probe Type: T-Ha		T-Handle Pr	-Handle Probe		Snow-Survey Team Names:			
Snow Tube T	w Tube Type: Adirondack Snow Tube			Jeff Murray,	Sarah Byam			

Snow Course Depths (cm)

	1	2	3	4	5
1	37.0	31.0	22.0	16.0	25.0
2	38.5	33.5	22.0	17.5	26.5
3	32.0	42.0	21.0	22.0	28.5
4	27.0	43.0	25.0	23.0	34.0
5	25.0	36.0	24.0	20.0	31.5
6	23.0	35.5	22.0	23.0	35.0
7	22.0	28.0	24.0	25.0	35.0
8	21.0	27.0	23.5	20.0	32.0
9	24.0	22.0	23.0	23.0	31.5
10	22.5	20.0	22.0	24.0	29.5

	(cm)
Average snow depth =	26.8
Maximum snow depth =	43.0
Minimum snow depth =	16.0
Standard deviation =	6.3
	(inches)
Average snow depth =	10.6
Average snow depth = Maximum snow depth =	10.6 16.9

Project ID:	ATN Project	Site Location/Lake ID:	Badami MET	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/13/2010	Time: 15:50	

Location Description:	~ 50 yards no	rtheast of the E	Badami Met S	tation. Lath was placed in th	e tundra marknig t	he starting point of the survey.	
Survey objective:		e snow depth and density for application to lake recharge and tundra travel management.			Weather Observations:	20 F, Calm, Cloudy	
Latitude:	N 70° 8.195'		Longitude:	W 147° 0.554'	Datum:	NAD83	
Elevation:	26 ft		Elevation Datum:	NGVD29	Reference Markers:	Met Station	
Drainage Basin:	Beaufort Sea	Coastal Plain	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra	
Slope Angle:	Flat		Access Notes:	Truck	Other:	Multiple brittle layers, hard surface	
Snow Depth F	Probe Type:		T-Handle Pr	obe	Snow-Survey 1	Геат Names:	
Snow Tube T	ype:	Adirondack S	now Tube		Jeff Murray, Sarah Byam		

Snow Course Depths (cm)

	1	2	3	4	5
1	24.0	28.5	23.0	32.0	37.0
2	25.5	23.0	23.0 17.0		36.0
3	22.0	29.0	15.0	24.0	36.5
4	17.0	24.0	20.0	18.0	27.0
5	22.0	26.0	26.0	20.0	17.0
6	22.5	26.5	22.0	18.0	20.0
7	19.0	29.5	22.5	22.0	18.0
8	17.0	24.0	24.0	20.0	16.0
9	18.5	19.0	32.0	30.5	18.5
10	13.0	26.0	27.0	32.0	23.0

	(cm)
Average snow depth =	23.5
Maximum snow depth =	37.0
Minimum snow depth =	13.0
Standard deviation =	5.7
	(inches)
Average snow depth =	(inches) 9.2
Average snow depth = Maximum snow depth =	,
	9.2

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
	(CITI)	(9)	(CITT 3)	(g/ciii 3)	(GIII)
w5	18	171.0	642.6	0.27	
04	19	195.9	678.3	0.29	
x1	17	175.3	606.9	0.29	
fb3	16	133.1	571.2	0.23	
02	18	165.2	642.6	0.26	

Average Density = **0.267**

Average Snow Water Equivalent (SWE) = 6.3 cm H2O

Average Snow Water Equivalent = 2.47 inches H2O

Average Snow Water Equivalent = 0.21 feet H2O

SWE = avg. snow depth*(density snow/density water)

Project ID:	ATN Project	Site Location/Lake ID:	Badami MET -	SB
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/13/2010	Time: 1	5:50

Location Description:	~ 50 yards r	ortheast of the E	Badami Met S	tation. Lath was placed in th	e tundra marknig tl	he starting point of the survey.	
Survey objective:	Determine snow depth and density for application to lake recharge studies, and tundra travel management.				Weather Observations:	20 F, Calm, Cloudy	
Latitude:	N 70° 8.195	1	Longitude:	W 147° 0.554'	Datum:	NAD83	
Elevation:	26 ft		Elevation Datum:	NGVD29	Reference Markers:	Met Station	
Drainage Basin:	Beaufort Se	a Coastal Plain	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra	
Slope Angle:	Flat		Access Notes:	Truck	Other:	Multiple brittle layers, hard surface	
Snow Depth I	Probe Type:		T-Handle Pr	obe	Snow-Survey T	Feam Names:	
Snow Tube T	ype:	Adirondack S	now Tube		Jeff Murray, Sarah Byam		

Snow Course Depths (cm)

	1	2	3	4	5
1	21.0	18.5	28.5	27.0	24.0
2	20.0	25.0	20.5	27.0	29.0
3	22.0	22.0	23.5	35.0	36.5
4	16.0	20.5	25.0	28.0	38.0
5	18.0	19.0	15.0	33.0	35.0
6	17.0	18.0	18.0	29.5	32.0
7	27.0	23.0	22.0	34.5	43.0
8	22.5	30.0	24.5	31.0	32.0
9	20.0	29.0	23.5	19.0	25.0
10	20.0	29.0	19.0	27.0	24.5

	(cm)
Average snow depth =	25.3
Maximum snow depth =	43.0
Minimum snow depth =	15.0
Standard deviation =	6.3
	(inches)
Average snow depth =	(inches) 10.0
Average snow depth = Maximum snow depth =	,
•	10.0
Maximum snow depth =	10.0 16.9

Data entered by: Jeff Murray Data QA/QC by: K. Hilton

Date: 4/14/2010 Date: 6/1/2010

Project ID:	ATN Project	Site Location/Lake ID:	Badami Reservoir	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/13/2010	Time: 17:00	

Location Description:	~ 200 yards	ESE of the road	entrance			
Survey objective:		•	depth and density for application to lake recharge dra travel management.			20 F, Calm, Thin clouds
Latitude:	N 70° 7.775	1	Longitude:	W 146° 59.956'	Datum:	NAD83
Elevation:	21 ft		Elevation Datum:	NGVD29	Reference Markers:	none
Drainage Basin:	Beaufort Se	a Coastal Plain	Slope Direction:	Flat	Vegetation Type:	none
Slope Angle:	Flat		Access Notes:	Truck	Other:	Variable depth, patches of bare ice
Snow Depth I	Probe Type:		T-Handle Pr	obe	Snow-Survey 1	Feam Names:
Snow Tube T	ype:	Adirondack S	now Tube		Jeff Murray, Sarah Byam	

Snow Course Depths (cm)

	1	2	3	4	5
1	12.0	6.5	7.5	1.0	13.0
2	11.0	5.0	6.5	1.0	8.0
3	13.0	1.0	4.0	1.0	11.0
4	14.0	4.0	7.0	3.0	13.0
5	12.0	6.0	10.5	5.0	13.0
6	9.0	10.0	8.5	7.0	11.5
7	6.0	9.0	7.0	9.0	12.0
8	5.5	12.0	5.0	6.0	14.0
9	2.0	10.0	1.0	8.0	18.0
10	2.0	13.0	1.0	7.0	18.0

Average snow depth =	(cm) 8.0
Maximum snow depth =	18.0
Minimum snow depth =	1.0
Standard deviation =	4.5
	(inches)
Average snow depth =	3.2
Maximum snow depth =	7.1
Minimum snow depth =	0.4
Standard deviation =	1.8

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
d4	12	137.2	428.4	0.32	
f1	10	109.0	357.0	0.31	
fb2	8	106.0	285.6	0.37	
fb5	10	132.1	357.0	0.37	
w1	14	144.3	499.8	0.29	

Average Density = **0.331**

Average Snow Water Equivalent (SWE) = 2.7 cm H2O

Average Snow Water Equivalent = 1.04 inches H2O

Average Snow Water Equivalent = 0.09 feet H2O

SWE = avg. snow depth*(density snow/density water)

Project ID:	ATN Project	Site Location/Lake ID:	Badami Reservoir - SB	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/13/2010	Time: 17:00	

Location Description:	~ 200 yards ESE of the road entrance						
Survey objective:		Determine snow depth and density for application to lake recharge studies, and tundra travel management.				20 F, Calm, Thin clouds	
Latitude:	N 70° 7.775		Longitude:	W 146° 59.956'	Datum:	NAD83	
Elevation:	21 ft		Elevation Datum:	NGVD29	Reference Markers:	none	
Drainage Basin:	Beaufort Se	a Coastal Plain	Slope Direction:	Flat	Vegetation Type:	none	
Slope Angle:	Flat		Access Notes:	Truck	Other:	Variable depth, patches of bare ice	
Snow Depth I	Probe Type:		T-Handle Pr	obe	Snow-Survey 1	Геат Names:	
Snow Tube Type: Adirondack S		now Tube		Jeff Murray, Sarah Byam			

Snow Course Depths (cm)

	1	2	3	4	5
1	11.5	5.0	9.0	5.0	9.0
2	13.5	5.5	10.0	2.0	8.0
3	11.5	2.0	7.0	0.5	8.5
4	13.5	5.5	5.0	0.0	10.0
5	12.5	2.0	5.5	0.0	4.0
6	14.0	2.0	4.5	4.0	10.0
7	11.5	6.0	5.0	10.5	12.0
8	14.0	6.5	8.5	12.0	9.5
9	8.0	10.0	8.0	11.0	10.0
10	5.5	12.0	6.5	13.0	10.0

	(cm)
Average snow depth = _	7.8
Maximum snow depth =	14.0
Minimum snow depth =	0.0
Standard deviation =	3.9
	(inches)
Average snow depth = _	3.1
Maximum snow depth =	5.5
Minimum snow depth =	0.0
Standard deviation =	1.5

Data entered by: Jeff Murray Data QA/QC by: K. Hilton

Date: 4/14/2010 Date: 6/1/2010

Project ID:	ATN Project	Site Location/Lake ID:	Badami Res - Tundra	а
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/13/2010	Time: 18:00	

Location Description:	~ 20 yards north of berm separaing tundra from Badami Reservoir						
Survey objective:		ow depth and o undra travel ma	, , ,	olication to lake recharge	Weather Observations:	15 F, Windy, Scattered Clouds	
Latitude:	N 70° 7.870'		Longitude:	W 147° 0.076'	Datum:	NAD83	
Elevation:	26 ft		Elevation Datum:	NGVD29	Reference Markers:	Road to the west	
Drainage Basin:	Beaufort Sea	Coastal Plain	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra	
Slope Angle:	Flat		Access Notes:	Truck	Other:	Multiple wind layers	
Snow Depth F	Probe Type:		T-Handle Pro	obe	Snow-Survey T	eam Names:	
Snow Tube Type: Adirondack Si		now Tube		Jeff Murray, Sarah Byam			

Snow Course Depths (cm)

	1	2	3	4	5
1	21.5	40.0	51.5	34.0	21.0
2	24.0	45.5	49.0	29.5	22.5
3	22.0	47.0	49.0	29.0	22.0
4	25.0	48.5	50.0	27.0	26.5
5	26.5	51.0	52.5	27.5	28.0
6	35.0	50.0	51.5	19.5	33.0
7	37.0	47.5	50.5	13.0	37.0
8	38.0	50.0	35.0	21.0	39.5
9	41.0	51.5	30.0	18.5	40.0
10	38.0	50.0	32.5	19.5	46.5

	(cm)
Average snow depth =	35.9
Maximum snow depth =	52.5
Minimum snow depth =	13.0
Standard deviation =	11.7
	(inches)
Average snow depth =	14.1
Maximum snow depth =	20.7
Minimum snow depth =	5.1
Standard deviation =	4.6

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
	\ /		\ /	,	(0111)
w2	33	346.2	1178.1	0.29	
f2	50	556.0	1785.0	0.31	
d3	52	656.4	1856.4	0.35	
n5	34	420.2	1213.8	0.35	
fb2	22	236.8	785.4	0.30	

Average Density = **0.321**

Average Snow Water Equivalent (SWE) = 11.5 cm H2O

Average Snow Water Equivalent = 4.54 inches H2O

Average Snow Water Equivalent = 0.38 feet H2O

SWE = avg. snow depth*(density snow/density water)

Project ID:	ATN Project	Site Location/Lake ID:	Betty Pingo	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/14/2010	Time: 12:55	_

Location Description:	Near Wyoming gage. At staked snow site. Started east and then went north. Point of beginning is flagged rebar. Vertical snow gauge = 0.2'. Snow Depth under Judd sensor = 26 cm - center, 24, 24, 28, 27, average= 25.8cm. Wyoming Gauge = 31-1/2".							
Survey objective:	SWE and tund	ra travel studies and	d manage	Weather Observations	20 F, Windy, Partly cloudy			
Latitude:	N 70° 16.772'	Longi	itude:	W 148° 53.741'	Datum:	NAD83		
Elevation:	34 ft.	Eleva Datur		NVGD27	Reference Markers:	Re-bar and lathe		
Drainage Basin:	Kuparuk River	Slope Direc		Flat	Vegetation Type:	Lowland Moist Sedge-Shrub Tundra		
Slope Angle:	Flat	Acces Notes		Truck	Other:	Multiple layers, wind packed		
Snow Depth Probe Type:		T-Har	T-Handle Probe		Snow-Survey	Snow-Survey Team Names:		
Snow Tube T	ype:	Adirondack Snow Tu	ube		Jeff Murray, S	arah Byam		

Snow Course Depths (cm)

	1	2	3	4	5
1	34.5	45.0	46.0	35.0	26.0
2	41.5	46.0	44.0	25.0	33.5
3	44.5	44.5	49.5	19.0	33.0
4	41.0	46.0	55.0	22.0	47.0
5	42.5	49.0	40.0	13.0	27.0
6	45.5	47.0	44.0	22.0	46.0
7	41.0	47.0	42.0	23.0	50.5
8	36.0	45.0	40.0	14.0	52.0
9	37.5	46.0	39.0	27.0	52.5
10	38.0	42.0	39.0	34.0	52.0

	(cm)
Average snow depth =	39.0
Maximum snow depth =	55.0
Minimum snow depth =	13.0
Standard variation =	10.3
	(inches)
Average snow depth =	15.4
Maximum snow depth =	21.7
Minimum anau danth	
Minimum snow depth =	5.1

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
	(CIII)	(g)	(CITE-3)	(9/6111-3)	(CIII)
d1	34	362.6	1213.8	0.30	
n4	32	301.5	1142.4	0.26	
f3	49	512.1	1749.3	0.29	
n1	24	280.4	856.8	0.33	
w4	56	567.1	1999.2	0.28	

Average Density = **0.293**Average Snow Water Equivalent (SWE) = **11.4**

Average Snow Water Equivalent = 4.51 inches H2O
Average Snow Water Equivalent = 0.38 feet H2O

cm H2O

SWE = avg. snow depth*(density snow/density water)

Project ID:	ATN Project	Site Location/Lake ID:	Betty Pingo - SB	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/14/2010	Time:	12:55

Location Description:	Near Wyoming gage. At staked snow site. Started east and then went north. Point of beginning is flagged rebar. Vertical snow gauge = 0.2'. Snow Depth under Judd sensor = 26 cm - center, 24, 24, 28, 27, average= 25.8cm. Wyoming Gauge = 31-1/2".							
Survey objective:	SWE and tund	ra travel studies and man	Weather Observations	20 F, Windy, Partly cloudy				
Latitude:	N 70° 16.772'	Longitude:	W 148° 53.741'	Datum:	NAD83			
Elevation:	34 ft.	Elevation Datum:	NVGD27	Reference Markers:	Re-bar and lathe			
Drainage Basin:	Kuparuk River	Slope Direction:	Flat	Vegetation Type:	Lowland Moist Sedge-Shrub Tundra			
Slope Angle:	Flat	Access Notes:	Truck	Other:	Multiple layers, wind packed			
Snow Depth Probe Type:		T-Handle F	T-Handle Probe		Snow-Survey Team Names:			
Snow Tube T	ype:	Adirondack Snow Tube		Jeff Murray, S	sarah Byam			

Snow Course Depths (cm)

	1	2	3	4	5	
1	39.0	36.5	27.0	25.0	29.0	Average snow d
2	42.0	28.0	20.0	50.0	30.0	Maximum snow d
3	45.0	25.0	21.0	27.0	56.0	Minimum snow d
4	47.0	24.0	46.0	51.5	41.0	Standard varia
5	43.0	20.5	44.0	43.0	43.0	
6	42.0	15.0	51.5	20.0	44.0	
7	43.0	12.5	35.5	18.5	50.5	Average snow d
8	46.0	10.5	36.0	25.0	51.0	Maximum snow d
9	40.0	8.0	30.0	24.0	51.0	Minimum snow d
10	34.0	17.0	31.0	27.5	49.0	Standard varia

	(cm)
Average snow depth =	34.3
Maximum snow depth =	56.0
Minimum snow depth =	8.0
Standard variation =	12.6
	(inches)
Average snow depth =	13.5
Maximum snow depth =	22.0
Minimum snow depth =	3.1
Standard variation =	5.0

Data entered by: Jeff Murray Data QA/QC by: Kristie Hilton Date: 4/20/10 Date: 4/28/10

Project ID:	ATN Project	Site Location/Lake ID:	Duck Island MET	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/12/2010	Time: 14:45	

Location Description:	Near Duck Island Meteorlogical station. Staked snow course. Snow depths under SR50 sensor: 38 cm, 38.5, 39, 37, 37.5 center. Average=38 cm							
Survey objective:	SWE and Tu sampling site		(Co-located snow	Weather Observations	20 F, scattered clouds, windy s			
Latitude:	N 70° 16.20	6'	Longitude:	W 147° 59.265′	Datum:	NAD 83		
Elevation:	45 ft.		Elevation Datum:	NGVD29	Reference Markers:	Black PVC Pipe		
Drainage Basin:	Sagavanirkto	ok River	Slope Direction:	Flat	Vegetation Type:	Upland Tussock Tundra		
Slope Angle:	Flat		Access Notes:	Truck	Other:	Two layers, one thick homogenous, one ice		
Snow Depth Probe Type:		T-Handle Pr	T-Handle Probe		y Team Names:			
Snow Tube T	уре:	Adirondac	k Snow Tube		Jeff Murray,	Sarah Byam		

Snow Course Depths (cm)

		•		5
1 29.0	22.5	29.0	34.0	19.0
2 28.0	27.5	25.0	33.0	16.0
3 25.0	10.0	29.0	36.5	18.0
4 24.0	12.0	32.0	29.0	23.0
5 27.0	17.0	28.5	31.5	24.0
6 24.0	22.5	25.0	30.5	28.0
7 20.5	27.0	21.5	28.5	28.0
8 22.5	20.0	25.0	28.0	28.0
9 14.0	27.0	27.0	27.0	23.0
10 19.0	20.5	29.0	21.5	23.0

	(cm)
Average snow depth =	24.8
Maximum snow depth =	36.5
Minimum snow depth =	10.0
Standard deviation =	5.5
	(inches)
Average snow depth =	(inches) 9.8
Average snow depth =	` ,
	9.8

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
fb3	24	306.1	856.8	0.36	
n4	12	147.0	428.4	0.34	
fb2	16	137.4	571.2	0.24	
fb5	19	203.9	678.3	0.30	
w5	20	225.6	714.0	0.32	

Average Density = **0.300**

Average Snow Water Equivalent (SWE) = 7.4 cm H2O

Average Snow Water Equivalent = 2.93 inches H2O

Average Snow Water Equivalent = 0.24 feet H2O

SWE = avg. snow depth*(density snow/density water)

Project ID: ATN Project Site Location/Lake ID: Duck Island MET - SB
Survey Purpose: Determine Snow Depth and SWE Date: 4/12/2010 Time: 14:45

Location Description:	Near Duck Island Meteorlogical station. Staked snow course. Snow depths under SR50 sensor: 38 cm, 38.5, 39, 37, 37.5 center. Average=38 cm							
Survey objective:	SWE and Tu sampling site		(Co-located snov	Weather 20 F, scattered clouds, winc Observations				
Latitude:	N 70° 16.206	6'	Longitude:	W 147° 59.265'	Datum:	NAD 83		
Elevation:	45 ft.		Elevation Datum:	NGVD29	Reference Markers:	Black PVC Pipe		
Drainage Basin:	Sagavanirkto	ok River	Slope Direction:	Flat	Vegetation Type:	Upland Tussock Tundra		
Slope Angle:	Flat		Access Notes:	Truck	Other:	Two layers, one thick homogenous, one ice		
Snow Depth Probe Type:		T-Handle Pr	T-Handle Probe		Snow-Survey Team Names:			
Snow Tube T	ype:	Adirondac	k Snow Tube		Jeff Murray,	Sarah Byam		

Snow Course Depths (cm)

1 30.0 11.5 31.0 26.0 26.5 2 38.0 11.0 27.0 28.0 21.0 3 22.0 12.0 26.5 26.0 29.0 4 24.0 22.5 26.0 29.0 32.0 5 20.0 27.5 27.0 29.5 34.0		1	2	3	4	5
3 22.0 12.0 26.5 26.0 29.0 32.0 4 24.0 22.5 26.0 29.0 32.0	1	30.0	11.5	31.0	26.0	26.5
4 24.0 22.5 26.0 29.0 32.0	2	38.0	11.0	27.0	28.0	21.0
	3	22.0	12.0	26.5	26.0	29.0
5 20.0 27.5 27.0 29.5 34.0	4	24.0	22.5	26.0	29.0	32.0
	5	20.0	27.5	27.0	29.5	34.0
6 24.0 25.0 28.5 27.0 27.0	6	24.0	25.0	28.5	27.0	27.0
7 36.5 26.0 28.5 15.0 22.5	7	36.5	26.0	28.5	15.0	22.5
8 21.5 22.5 29.5 27.0 14.0	8	21.5	22.5	29.5	27.0	14.0
9 24.0 27.0 30.5 21.5 11.0	9	24.0	27.0	30.5	21.5	11.0
10 15.0 28.0 30.5 25.0 15.5	10	15.0	28.0	30.5	25.0	15.5

	(cm)
Average snow depth =	24.8
Maximum snow depth =	38.0
Minimum snow depth =	11.0
Standard deviation =	6.3
	(inches)
Average snow depth =	9.8
Maximum snow depth =	15.0
Maximum snow depth = Minimum snow depth =	15.0 4.3

Data entered by: Jeff Murray
Data QA/QC by: K. Hilton
Date: 4/14/2010
Date: 6/1/2010

Project ID: ATN Site Location/Lake ID: L9312 - Lake Surface
Survey Purpose: Determine snow depth, SWE Date: 4/15/2010 Time: 9:12

Location Description:	On lake surface ~150 yards east from L9312 pumphouse.							
Survey objective:	Determine snow dep studies, and tundra	oth and density for ap travel management.	Weather 10 F, Calm, Sunny Observations					
Latitude:	N 70° 20.008′	Longitude:	W 150° 57.083'	Datum:	NAD 83			
Elevation:	7 ft	Elevation Datum:	BPMSL	Reference Markers:	None, Ice surface			
Drainage Basin:	Colville Basin	Slope Direction:	Flat	Vegetation Type:	None, Ice surface			
Slope Angle:	Flat	Access Notes:	Hagglund	Other:	Packed snow, Areas of bare ice			
Snow Depth Probe Type:		T- probe	T- probe		Snow-Survey Team Names:			
Snow Tube T	ype: Adiro	ndack Snow Tube		Jeff Murray, S	Sarah Byam			

Snow Course Depths (cm)

	1	2	3	4	5
1	31.0	31.0	19.0	11.0	29.5
2	32.0	31.0	24.0	10.0	29.0
3	27.0	32.0	30.0	9.0	32.5
4	25.0	25.0	29.0	8.5	35.0
5	26.0	27.0	26.5	9.5	23.0
6	27.0	25.0	30.0	13.0	22.0
7	27.0	17.0	25.0	12.0	27.0
8	29.0	17.0	19.5	10.0	32.0
9	30.5	18.0	21.0	17.5	33.0
10	32.5	17.0	20.0	26.0	25.0

Average snow depth = _	(cm) 23.7
Maximum snow depth =	35.0
Minimum snow depth =	8.5
Standard variation =	7.5
	(inches)
Average snow depth = _	(inches) 9.3
Average snow depth = _ Maximum snow depth = _	` ,
· -	9.3

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
:) 5	28	353.7	999.6	0.35	(311)
:)4	24	300.0	856.8	0.35	
:)3	30	355.1	1071.0	0.33	
:)1	10	125.4	357.0	0.35	
:)2	23	332.0	821.1	0.40	

Average Density = **0.358**

Average Snow Water Equivalent (SWE) = 8.5 cm H2O

Average Snow Water Equivalent = 3.34 inches H2O

Average Snow Water Equivalent = 0.28 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Murray Date: 4/20/10
Data QA/QC by: Kristie Hilton Date: 4/28/10

Project ID:	ATN	Site Location/Lake ID	: L9312 - Lake Surface - SB
Survey Purpose:	Determine snow depth, SWE	Date: 4/15/2010	Time: 9:12

Location Description:	On lake surface ~150 yards east from L9312 pumphouse.							
Survey objective:			nd density for ap el management.	Weather Observations:	10 F, Calm, Sunny			
Latitude:	N 70° 20.008	'	Longitude:	W 150° 57.083'	Datum:	NAD 83		
Elevation:	7 ft		Elevation Datum:	BPMSL	Reference Markers:	None, Ice surface		
Drainage Basin:	Colville Basin	l	Slope Direction:	Flat	Vegetation Type:	None, Ice surface		
Slope Angle:	Flat		Access Notes:	Hagglund	Other:	Packed snow, Areas of bare ice		
Snow Depth Probe Type:		T- probe	T- probe		Team Names:			
Snow Tube Type: Adirondack			ck Snow Tube		Jeff Murray, S	arah Byam		

Snow Course Depths (cm)

	1	2	3	4	5
1	27.0	29.5	16.5	20.0	14.0
2	29.0	32.0	18.0	17.5	18.0
3	29.5	31.5	21.5	10.0	24.0
4	29.0	31.5	25.0	8.0	26.0
5	21.5	30.5	23.0	9.5	28.0
6	25.0	28.0	29.5	10.0	29.0
7	28.0	25.0	27.5	11.0	34.0
8	27.0	22.5	23.0	13.0	25.0
9	29.0	22.5	20.0	11.0	21.0
10	27.0	22.0	22.0	9.5	23.5

	(cm)
Average snow depth =	22.7
Maximum snow depth =	34.0
Minimum snow depth =	8.0
Standard variation =	7.0
	(inches)
Average snow depth =	8.9
Maximum snow depth =	13.4
Maximum snow depth = Minimum snow depth =	13.4 3.1

Arctic Transportation Networks Project

Form F-012: Snow Survey Form

Project ID:ATNSite Location/Lake ID:L9312 - TundraSurvey Purpose:Determine snow depth, SWEDate: 4/15/2010Time: 8:45

Location Description:	On tundra on s	staked course, adjacent	and north of L9312 weath	er station.		
Survey objective:	Determine snow depth and density for application to lake recharge studies, and tundra travel management. 5 F, Calm, Sunny Observations					
Latitude:	N 70° 19.995'	Longitude	e: W 150° 56.918'	Datum:	NAD 83	
Elevation:	7 ft	Elevation Datum:	BPMSL	Reference Markers:	Orange stakes	
Drainage Basin:	Colville River	Slope Direction	Flat :	Vegetation Type:	Lowland Wet Sedge Tundra	
Slope Angle:	Flat	Access Notes:	Haggland	Other:	Crunchy, Hard packed snow	
Snow Depth I	Probe Type:	T-probe		Snow-Survey	Team Names:	
Snow Tube T	ype:	Adirondack Snow Tube		Jeff Murray, S	Sarah Byam	

Snow Course Depths (cm)

	1	2	3	4	5
1	38.0	48.5	54.0	55.0	43.0
2	37.5	46.0	45.0	52.0	45.0
3	35.0	34.0	39.0	51.5	40.0
4	34.0	39.0	36.0	51.0	35.0
5	69.0	30.0	30.0	59.0	38.0
6	43.5	27.0	36.0	57.0	25.0
7	37.0	27.0	41.0	48.5	21.0
8	40.5	20.0	44.0	24.5	27.0
9	47.5	26.0	47.0	21.0	31.0
10	44.0	53.5	46.0	9.0	39.0

Average snow depth =	(cm) 39.4
Maximum snow depth =	69.0
Minimum snow depth =	9.0
Standard variation =	11.6
	(inches)
Average snow depth =	15.5
Maximum snow depth =	27.2
Minimum snow depth =	3.5
Standard variation =	4.6

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
h4	26	295.5	928.2	0.32	
h5	46	487.8	1642.2	0.30	
h1	32	340.5	1142.4	0.30	
h2	46	503.3	1642.2	0.31	
h3	38				

Average Density = 0.305

Average Snow Water Equivalent (SWE) = 12.0 cm H2O

Average Snow Water Equivalent = 4.72 inches H2O

Average Snow Water Equivalent = 0.39 feet H2O

SWE = avg. snow depth*(density snow/density water)

Project ID:	ATN	Site Location/Lake ID:	L9312 - Tundra - SB
Survey Purpose:	Determine snow depth, SWE	Date: 4/15/2010	Time: 8:45

Location Description:	On tundra on	staked course, ac	djacent and	north of L9312 weather sta	tion.	
Survey objective:	Determine snow depth and density for application to lake recharge studies, and tundra travel management. 5 F, Calm, Sunny Observations					
Latitude:	N 70° 19.995'	Lc	ongitude:	W 150° 56.918'	Datum:	NAD 83
Elevation:	7 ft	I	evation atum:	BPMSL	Reference Markers:	Orange stakes
Drainage Basin:	Colville River		ope rection:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat		ccess otes:	Haggland	Other:	Crunchy, Hard packed snow
Snow Depth I	Probe Type:	T-	probe		Snow-Survey	Team Names:
Snow Tube T	ype:	Adirondack Snov	w Tube		Jeff Murray, S	arah Byam

Snow Course Depths (cm)

	1	2	3	4	5
1	25.5	28.5	25.0	44.0	15.0
2	29.0	42.0	32.0	45.0	12.0
3	31.0	44.0	23.0	43.0	24.5
4	28.0	45.0	34.5	47.0	31.0
5	32.0	42.5	43.5	41.0	38.5
6	62.0	34.5	33.5	51.0	37.0
7	44.0	37.0	35.0	42.0	41.0
8	34.0	29.0	35.0	47.0	37.0
9	35.5	28.0	37.5	24.0	40.0
10	34.0	35.0	44.0	16.0	38.0

	(cm)
Average snow depth =	35.6
Maximum snow depth =	62.0
Minimum snow depth =	12.0
Standard variation =	9.4
	(inches)
Average snow depth =	(inches) 14.0
Average snow depth = Maximum snow depth =	,
•	<u>14.0</u>
Maximum snow depth =	14.0 24.4

Project ID:	ATN Project	Site Location/Lake ID:	ADNR P-Pad	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/14/2010	Time: 12:20	

Location Description:			r Betty Pingo, near soil thern R measurements on left.	mistors. GWS me	easurements on right (as
Survey objective:	Co-located snow survestudies and management	•	Weather 20 F, Windy, Scattered Observations clouds		
Latitude:	N 70° 16.967'	Longitude:	W 148° 54.807'	Datum:	NAD83
Elevation:	33 ft.	Elevation Datum:	NGVD29	Reference Markers:	none
Drainage Basin:	Kuparuk River	Slope Direction:	Flat	Vegetation Type:	Lowland Moist Sedge-Shrub Tundra
Slope Angle:	Flat	Access Notes:	Truck	Other:	Wind packed snow, wind quickly filling in footprints
Snow Depth I	Probe Type:	T-Handle Pr	obe	Snow-Survey	Team Names:
Snow Tube T	ype: Adirono	dack Snow Tube		Jeff Murray, S	Sarah Byam

Snow Course Depths (cm)

	1	2	3	4	5
1	16.0	31.0	45.5	18.0	25.0
2	16.0	34.0	46.0	13.0	27.0
3	12.0	30.0	41.5	22.0	24.5
4	31.5	32.0	35.0	24.0	30.0
5	32.0	22.0	34.5	27.0	23.0
6	32.0	17.0	21.0	30.0	27.0
7	31.0	19.0	9.0	22.0	48.0
8	29.0	39.5	24.0	32.0	48.5
9	29.0	42.0	23.5	41.0	48.5
10	31.0	44.0	15.0	27.5	33.0

	(cm)
Average snow depth =	29.1
Maximum snow depth =	48.5
Minimum snow depth =	9.0
Standard variation =	10.0
	(inches)
Average snow depth = _	(inches) 11.5
Average snow depth =	,
•	<u>11.5</u>

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
	(CIII)	(g)	(GIIP'S)	(9/611/3)	(CIII)
b5	14	106.9	499.8	0.21	
d5	20	146.2	714.0	0.20	
n5	35	328.2	1249.5	0.26	
f5	34	296.3	1213.8	0.24	
fb2	48	519.7	1713.6	0.30	

Average Density = **0.246**

Average Snow Water Equivalent (SWE) = 7.2 cm H2O

Average Snow Water Equivalent = 2.82 inches H2O

Average Snow Water Equivalent = 0.23 feet H2O

SWE = avg. snow depth*(density snow/density water)

 Project ID:
 ATN Project
 Site Location/Lake ID:
 ADNR P-Pad - SB

 Survey Purpose:
 Determine Snow Depth and SWE
 Date: 4/14/2010
 Time: 12:20

Location Description:		•	•	r Betty Pingo, near soil therr R measurements on left.	mistors. GWS me	easurements on right (as
Survey objective:		Co-located snow survey site with DNR sampling site, tundra travel studies and management				20 F, Windy, Scattered clouds
Latitude:	N 70° 16.967'		Longitude:	W 148° 54.807'	Datum:	NAD83
Elevation:	33 ft.		Elevation Datum:	NGVD29	Reference Markers:	none
Drainage Basin:	Kuparuk Rive	r	Slope Direction:	Flat	Vegetation Type:	Lowland Moist Sedge-Shrub Tundra
Slope Angle:	Flat		Access Notes:	Truck	Other:	Wind packed snow, wind quickly filling in footprints
Snow Depth I	Probe Type:		T-Handle Pr	obe	Snow-Survey	Team Names:
Snow Tube T	ype:	Adirondack S	now Tube		Jeff Murray, S	Sarah Byam

Snow Course Depths (cm)

	1	2	3	4	5
1	13.0	23.0	46.0	14.5	18.5
2	17.5	26.0	45.5	25.0	28.0
3	16.0	24.0	42.5	25.5	32.5
4	26.0	22.0	37.0	32.0	21.0
5	31.0	28.0	25.0	38.0	23.0
6	23.0	31.0	17.0	45.5	23.5
7	28.5	45.0	25.0	50.0	24.0
8	31.0	45.5	41.0	49.0	26.0
9	34.0	46.0	36.0	18.5	25.0
10	24.5	48.0	19.0	28.0	20.5

	(cm)
Average snow depth =	29.7
Maximum snow depth =	50.0
Minimum snow depth =	13.0
Standard variation =	10.2
	(inches)
Average snow depth =	(inches) 11.7
Average snow depth = Maximum snow depth =	,
•	<u>11.7</u>
Maximum snow depth =	11.7 ´ 19.7

Project ID:	ATN Project	Site Location/Lake ID:	Sag River DOT	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/11/2010	Time: 14:41	

Location Description:	On Road to D	OT garage. Nea	r PVC pipe.	GWS stays to right (as lo	oking at pipe) and	DNR stays left.
Survey objective:	SWE and Tundra Travel (Co-located snow survey site with DNR sampling site)			Weather Observations	25F, Light, Windy, High Clouds	
Latitude:	N 68° 45.686'	L	ongitude:	W 148° 52.746'	Datum:	NAD 83
Elevation:	1640 ft.		levation atum:	NGVD29	Reference Markers:	Black PVC pipe
Drainage Basin:	Kuparuk Rive		lope Direction:	Flat	Vegetation Type:	Upland Tussock Tundra
Slope Angle:	Flat		ccess lotes:	Truck	Other:	Strong top layer, wind polished
Snow Depth I	Probe Type:	Т	-Handle Pro	obe	Snow-Survey	Team Names:
Snow Tube T	ype:	Adirondack Sno	w Tube		Michael Lilly,	Jeff Murray, Sarah Byam

Snow Course Depths (cm)

	1	2	3	4	5
1	31.0	34.0	41.0	50.5	51.0
2	35.0	42.5	46.0	36.0	39.5
3	33.0	30.0	51.0	49.0	50.0
4	35.0	34.0	42.0	44.0	42.0
5	34.5	31.5	33.0	36.5	51.0
6	36.0	37.5	33.5	46.5	45.0
7	42.0	43.0	33.0	37.5	44.0
8	44.0	37.5	37.5	51.0	36.5
9	39.0	40.5	41.0	58.0	35.5
10	49.5	41.0	37.0	40.0	42.5
10	49.5	41.0	37.0	40.0	42.5

	(cm)
Average snow depth =	40.6
Maximum snow depth =	58.0
Minimum snow depth =	30.0
Standard deviation =	6.5
	(inches)
	(IIICHES)
Average snow depth = _	16.0
Average snow depth = _ Maximum snow depth = _	,
· -	16.0

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
F5	45	140.6	1606.5	0.09	
D5	36	297.2	1285.2	0.23	
W1	35	321.7	1249.5	0.26	
B5	36	281.7	1285.2	0.22	
F2	34	243.3	1213.8	0.20	

Average Density = **0.199**

Average Snow Water Equivalent (SWE) = 8.1 cm H2O

Average Snow Water Equivalent = 3.19 inches H2O

Average Snow Water Equivalent = 0.27 feet H2O

SWE = avg. snow depth*(density snow/density water)

Project ID:	ATN Project	Site Location/Lake ID:	Sag River DOT - SB
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/11/2010	Time: 14:41

Location Description:	On Road to DOT gara	ge. Near PVC pipe	. GWS stays to right (as lo	ooking at pipe) and	DNR stays left.
Survey objective:	SWE and Tundra Travel (Co-located snow survey site with DNR sampling site)			Weather Observations	25F, Light, Windy, High Clouds
Latitude:	N 68° 45.686'	Longitude:	W 148° 52.746'	Datum:	NAD 83
Elevation:	1640 ft.	Elevation Datum:	NGVD29	Reference Markers:	Black PVC pipe
Drainage Basin:	Kuparuk River	Slope Direction:	Flat	Vegetation Type:	Upland Tussock Tundra
Slope Angle:	Flat	Access Notes:	Truck	Other:	Strong top layer, wind polished
Snow Depth I	Probe Type:	T-Handle Pr	obe	Snow-Survey	Team Names:
Snow Tube T	ype: Adirond	ack Snow Tube		Michael Lilly,	Jeff Murray, Sarah Byam

Snow Course Depths (cm)

1 42.0 42.0 30.0 40.0 46.0 2 43.5 32.0 34.5 38.5 33.0 3 54.5 39.0 38.5 36.5 32.5 4 32.5 43.0 36.0 33.0 36.5 5 46.0 31.0 44.0 35.0 44.0 6 49.0 30.0 38.0 42.5 35.5 7 37.0 31.0 47.5 37.0 41.0 8 32.0 32.0 33.0 49.0 31.0		1	2	3	4	5
3 54.5 39.0 38.5 36.5 32.5 4 32.5 43.0 36.0 33.0 36.5 5 46.0 31.0 44.0 35.0 44.0 6 49.0 30.0 38.0 42.5 35.5 7 37.0 31.0 47.5 37.0 41.0 8 32.0 32.0 33.0 49.0 31.0	1	42.0	42.0	30.0	40.0	46.0
4 32.5 43.0 36.0 33.0 36.5 5 46.0 31.0 44.0 35.0 44.0 6 49.0 30.0 38.0 42.5 35.5 7 37.0 31.0 47.5 37.0 41.0 8 32.0 32.0 33.0 49.0 31.0	2	43.5	32.0	34.5	38.5	33.0
5 46.0 31.0 44.0 35.0 44.0 6 49.0 30.0 38.0 42.5 35.5 7 37.0 31.0 47.5 37.0 41.0 8 32.0 32.0 33.0 49.0 31.0	3	54.5	39.0	38.5	36.5	32.5
6 49.0 30.0 38.0 42.5 35.5 7 37.0 31.0 47.5 37.0 41.0 8 32.0 32.0 33.0 49.0 31.0	4	32.5	43.0	36.0	33.0	36.5
7 37.0 31.0 47.5 37.0 41.0 8 32.0 32.0 33.0 49.0 31.0	5	46.0	31.0	44.0	35.0	44.0
8 32.0 32.0 33.0 49.0 31.0	6	49.0	30.0	38.0	42.5	35.5
02.0	7	37.0	31.0	47.5	37.0	41.0
	8	32.0	32.0	33.0	49.0	31.0
9 50.5 35.0 35.0 46.0 41.5	9	50.5	35.0	35.0	46.0	41.5
10 40.5 40.0 36.0 47.5 41.0	10	40.5	40.0	36.0	47.5	41.0

	(cm)
Average snow depth =	38.8
Maximum snow depth =	54.5
Minimum snow depth =	30.0
Standard deviation =	6.1
	(inches)
Average snow depth =	15.3
Maximum anous donth	04 =
Maximum snow depth =	21.5
Minimum snow depth =	11.8

Project ID:	ATN Project	Site Location/Lake ID:	Toolik NRCS Site	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/11/2010	Time: 12:10	

Location Description:	Near Tollik Ca	amp and Toolik Lake	e. Adjace	ent and south and west o	f NRCS long-term Cli	mate Station
Survey objective:	SWE and tune	ndra travel studies and management			Weather Observations:	26F, windy, thin clouds
Latitude:	N 68° 37.366'	Long	gitude:	W 149° 36.598'	Datum:	NAD 83
Elevation:	2500 ft.	Elev Datu	/ation um:	NGVD27	Reference Markers:	NRCS Station
Drainage Basin:	Toolik Lake	Slop Dire	oe ection:	East	Vegetation Type:	Upland Shrubby Tussuck Tundra
Slope Angle:	~10 degrees	Acce Note		Walk from Toolik	Other:	strong surface layer, sintering
Snow Depth Probe Type:		T-Ha	T-Handle Probe		Snow-Survey T	eam Names:
Snow Tube Type: Adirondack S		Adirondack Snow 1	Tube		Jeff Murray, Sa	rah Byam

Snow Course Depths (cm)

	1	2	3	4	5
1	34.0	38.0	28.0	49.0	38.0
2	36.0	27.0	27.0	33.0	48.0
3	37.0	46.0	33.0	47.0	52.0
4	34.5	19.0	30.5	27.0	38.5
5	27.0	21.0	32.0	35.0	30.0
6	47.5	18.0	34.0	38.0	39.0
7	38.0	27.0	35.0	29.0	38.5
8	25.0	37.0	32.0	33.0	26.0
9	36.0	34.0	46.0	32.0	44.0
10	30.5	37.5	33.0	48.0	43.0

	(cm)
Average snow depth =	35.0
Maximum snow depth =	52.0
Minimum snow depth =	18.0
Standard deviation =	7.9
	(inches)
Average snow depth =	13.8
Maximum snow depth =	20.5
Minimum snow depth =	7.1
wiii iii ii ii ii ii ii si iow deptir –	7.1

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
N2	30	251.0	1071.0	0.23	
N4	24	115.3	856.8	0.13	
N1	29	227.4	1035.3	0.22	
N3	24	140.0	856.8	0.16	
N5	44	428.9	1570.8	0.27	

Average Density = 0.205

Average Snow Water Equivalent (SWE) = 7.2 cm H2O

Average Snow Water Equivalent = 2.82 inches H2O

Average Snow Water Equivalent = 0.24 feet H2O

SWE = avg. snow depth*(density snow/density water)

Project ID: ATN Project Site Location/Lake ID: UAF 411
Survey Purpose: Determine Snow Depth and SWE Date: 4/12/2010 Time: 17:25

Location Description:	Off Dalton highway to the east. Near PVC pipe.							
Survey objective:	SWE and Tur sampling site		(Co-located snow	v survey site with DNR	Weather Observations	Weather 25 F, light winds, scattered Observations clouds		
Latitude:	N 70° 09.949	1	Longitude:	W 148° 27.307'	Datum:	NAD 83		
Elevation:	78 ft.		Elevation Datum:	NGVD29	Reference Markers:	Black PVC Pipe		
Drainage Basin:	Sagavanirkto	k River	Slope Direction:	Flat	Vegetation Type:	Upland Tussock Tundra		
Slope Angle:	Flat		Access Notes:	Truck	Other:	multi wind layering		
Snow Depth Probe Type: T-Ha		T-Handle Pr	Г-Handle Probe		Snow-Survey Team Names:			
Snow Tube Type: Adirondack Snow Tube			Jeff Murray,	Sarah Byam				

Snow Course Depths (cm)

	1	2	3	4	5
1	53.0	36.5	36.0	42.0	48.0
2	43.0	31.5	33.0	46.5	45.0
3	43.0	37.5	29.5	49.0	42.5
4	46.0	36.5	35.5	43.0	47.0
5	48.0	29.5	31.5	52.0	47.0
6	41.5	30.0	37.0	53.0	44.5
7	42.0	38.5	36.0	40.0	43.0
8	47.5	38.5	31.5	50.0	47.0
9	46.5	33.0	27.0	52.5	52.0
10	43.5	34.5	30.5	52.0	43.5

	(cm)
Average snow depth = _	41.3
Maximum snow depth =	53.0
Minimum snow depth =	27.0
Standard deviation =	7.3
	(inches)
Average snow depth = _	16.3
Maximum snow depth =	20.9
Minimum snow depth =	10.6
Standard deviation =	2.9

Snow Sample Depths and Weights

					·
Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
01	38	385.8	1356.6	0.28	
05	34	326.4	1213.8	0.27	
04	30	322.8	1071.0	0.30	
o2	48	481.2	1713.6	0.28	
о3	49	520.8	1749.3	0.30	

Average Density = 0.287

Average Snow Water Equivalent (SWE) = 11.8 cm H2O

Average Snow Water Equivalent = 4.67 inches H2O

Average Snow Water Equivalent = 0.39 feet H2O

SWE = avg. snow depth*(density snow/density water)

Project ID:ATN ProjectSite Location/Lake ID:UAF 411 - SBSurvey Purpose:Determine Snow Depth and SWEDate: 4/12/2010Time: 17:25

Location Description:	Off Dalton highway to the east. Near PVC pipe.						
Survey objective:	SWE and Tundra Travel sampling site)	(Co-located snow	w survey site with DNR	Weather Observations	25 F, light winds, scattered s clouds		
Latitude:	N 70° 09.949'	Longitude:	W 148° 27.307'	Datum:	NAD 83		
Elevation:	78 ft.	Elevation Datum:	NGVD29	Reference Markers:	Black PVC Pipe		
Drainage Basin:	Sagavanirktok River	Slope Direction:	Flat	Vegetation Type:	Upland Tussock Tundra		
Slope Angle:	Flat	Access Notes:	Truck	Other:	multi wind layering		
Snow Depth I	Probe Type:	T-Handle Pr	robe	Snow-Surve	y Team Names:		
Snow Tube T	ype: Adirondad	ck Snow Tube		Jeff Murray,	Sarah Byam		

Snow Course Depths (cm)

	1	2	3	4	5
1	40.0	37.0	29.5	30.5	42.0
2	46.0	32.0	33.0	36.5	49.5
3	42.5	37.0	31.0	40.0	50.5
4	41.0	32.0	24.5	44.5	49.0
5	32.0	40.0	16.0	48.0	52.5
6	40.0	26.0	34.0	54.0	47.0
7	40.5	29.0	36.0	55.5	39.0
8	43.0	30.0	38.0	54.0	37.0
9	43.0	33.0	37.0	49.0	51.0
10	37.0	33.0	36.0	50.0	46.0

	(cm)
Average snow depth =	39.5
Maximum snow depth =	55.5
Minimum snow depth =	16.0
Standard deviation =	8.5
	(inches)
Average snow depth =	(inches) 15.5
Average snow depth = Maximum snow depth =	,
•	15.5
Maximum snow depth =	15.5 21.9

Data entered by: Jeff Murray Data QA/QC by: K. Hilton

Date: 4/14/2010 Date: 6/1/2010

Project ID:	ATN Project	Site Location/Lake ID:	ADNR UGNU			
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/13/2010	Time: 10:00			

Location Description:	East of road to xxx. East of Pad. GWS measures to right (as looking at PVC pipe from road) and DNR measures to left.											
Survey objective:	Co-located sr studies and m	•	with DNR sar	mpling site, tundra travel	Weather 10 F, windy, overcast Observations:							
Latitude:	N 70° 27.480'		Longitude:	W 149° 48.540'	Datum:	NAD83						
Elevation:	16 ft	6 ft		Eleva Datur		NGVD29	Reference Markers:	Black PVC Pipe Lowland Wet Sedge Tundra				
Drainage Basin:	Beaufort Sea	Coastal Plain	Slope Direction:	Flat	Vegetation Type:							
Slope Angle:	Flat		Access Truck Notes:		Other:	multi wind layers, thick (10- 15cm)						
Snow Depth F	Snow Depth Probe Type:			obe	Snow-Survey 1	Snow-Survey Team Names:						
Snow Tube Type: Adirondack S			now Tube		Jeff Murray, Sarah Byam							

Snow Course Depths (cm)

	1	2	3	4	5
1	22.0	50.0	28.5	25.0	21.0
2	23.0	43.5	30.5	22.0	23.0
3	25.0	36.0	32.0	23.0	22.0
4	33.5	30.0	24.0	18.0	25.5
5	23.5	38.0	21.0	15.0	41.0
6	18.0	38.0	22.0	19.0	36.5
7	16.0	28.0	22.0	23.5	22.5
8	12.0	28.5	19.0	21.0	25.0
9	20.0	21.0	9.0	23.0	20.0
10	35.0	17.0	21.0	24.0	22.5

	(cm)
Average snow depth =	25.2
Maximum snow depth =	50.0
Minimum snow depth =	9.0
Standard deviation =	8.0
	(inches)
Average snow depth =	9.9
Maximum snow depth =	19.7
Minimum snow depth =	3.5

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
w3	27	308.3	963.9	0.32	(6111)
о3	49	573.9	1749.3	0.33	
01	20	227.8	714.0	0.32	
o5	20	218.4	714.0	0.31	
x4	33	365.8	1178.1	0.31	

Average Density = **0.317**

Average Snow Water Equivalent (SWE) = 8.0 cm H2O

Average Snow Water Equivalent = 3.14 inches H2O

Average Snow Water Equivalent = 0.26 feet H2O

SWE = avg. snow depth*(density snow/density water)

Project ID:	ATN Project	Site Location/Lake ID:	ADNR UGNU - SB	
Survey Purpose:	Determine Snow Depth and SWE	Date: 4/13/2010	Time: 10:00	

Location Description:	East of road to xxx. East of Pad. GWS measures to right (as looking at PVC pipe from road) and DNR measures to left.											
Survey objective:	Co-located sr studies and m	•	with DNR sar	mpling site, tundra travel	Weather 10 F, windy, overcast Observations:							
Latitude:	N 70° 27.480'		Longitude:	W 149° 48.540'	Datum:	NAD83						
Elevation:	16 ft	6 ft		Eleva Datur		NGVD29	Reference Markers:	Black PVC Pipe Lowland Wet Sedge Tundra				
Drainage Basin:	Beaufort Sea	Coastal Plain	Slope Direction:	Flat	Vegetation Type:							
Slope Angle:	Flat		Access Truck Notes:		Other:	multi wind layers, thick (10- 15cm)						
Snow Depth F	Snow Depth Probe Type:			obe	Snow-Survey 1	Snow-Survey Team Names:						
Snow Tube Type: Adirondack S			now Tube		Jeff Murray, Sarah Byam							

Snow Course Depths (cm)

	1	2	3	4	5
1	25.0	40.0	22.5	14.0	20.0
2	28.0	41.5	28.5	29.0	42.0
3	28.0	44.0	28.0	21.5	25.0
4	28.0	42.0	26.5	25.0	27.5
5	19.0	36.5	18.0	18.0	22.0
6	19.5	32.0	21.0	10.5	30.0
7	16.0	32.0	21.5	18.0	41.0
8	33.0	24.0	14.0	19.0	43.5
9	46.0	21.0	24.5	21.0	34.0
10	36.0	25.0	22.0	22.0	32.0

	(cm)
Average snow depth =	27.2
Maximum snow depth =	46.0
Minimum snow depth =	10.5
Standard deviation =	8.8
	(inches)
Average snow depth =	(inches) 10.7
Average snow depth = Maximum snow depth =	` ,
•	10.7
Maximum snow depth =	10.7 18.1

Data entered by: Jeff Murray Data QA/QC by: K. Hilton

Date: 4/14/2010 Date: 6/1/2010

APPENDIX B. ADNR SNOW DATA

The following tables report snow information measured by ADNR staff.

										Low	er Foo	thills												
30 Mile																							average	<u> </u>
Date																						g/cm^3		cm
	depth (in)	3	4	3	2	2	3	4	3	2	3	4	3	2	3	2	3	3	2	2	2	J	2.75	6.99
11/6/2009	density (g/cm^3)																							
	SWE (in)																							1
	depth (in)	3	3	4	3	3	2	4	4	4	3	3	3	4	3	4	4	4	5	4	2		3.45	8.76
11/18/2009	density (g/cm^3)	0.18	0.13																			0.15		1
	SWE (in)	0.62	0.52																				0.57	1.45
	depth (in)	3	4	4	4	4	5	4	4	4	4	3	4	4	4	4	4	6	6	8	9		4.60	11.68
12/2/2009	density (g/cm^3)	0.183	0.17																			0.18		1
	SWE (in)	1.099	1.106																				1.10	2.80
	depth (in)	3	5	4	4	4	4	4	4	4	6	4	5	4	4	6	5	5	4	4	6		4.45	11.30
12/9/2009	density (g/cm^3)	0.224	0.206																			0.22		
	SWE (in)	0.897	0.927																				0.91	2.32
	depth (in)	5	4	4	6	6	5	4	6	3	4	4	5	5	6	7	4	5	5	4	4		4.80	12.19
12/16/2009	density (g/cm^3)	0.282	0.253																			0.27		
	SWE (in)	0.845	1.137																				0.99	2.52
	depth (in)	9	10	9	8	5	5	5	7	5	5	6	6	5	7	7	5	5	5	5	5		6.20	15.75
12/21/2009	density (g/cm^3)	0.259	0.169																			0.21		
	SWE (in)	1.165	1.058																				1.11	2.82
	depth (in)	3	2	3	2	2	3	2	3	3	3	2	3	3	3	3	3	3	4	3	3		2.80	7.11
12/28/2009	density (g/cm^3)	0.189	0.203																			0.20		
	SWE (in)	0.567	0.711																				0.64	1.62
	depth (in)	7	6	6	6	6	6	5	5	6	7	7	6	7	7	6	6	5	6	7	7		6.20	15.75
1/6/2010	density (g/cm^3)	0.187	0.179																			0.18		
	SWE (in)	2.061	1.072																				1.57	3.98
	depth (in)	9	8	6	7	9	7	7	5	8	9	7	6	7	10	7	7	8	7	7	4		7.25	18.42
1/12/2010	density (g/cm^3)	0.195	0.205																			0.20		
	SWE (in)	1.556	1.539																				1.55	3.93
	depth (in)	8	6	4	11	7	3	5	7	8	4	7	5	9	5	8	3	7	4	10	4		6.25	15.88
1/27/2010	density (g/cm^3)	0.3	0.263																			0.28		
	SWE (in)	1.498	1.58																				1.54	3.91
	depth (in)	6	5	4	3	2	3	3	3	3	3	5	5	3	4	4	5	5	5	5	4		4.00	10.16
2/9/2010	density (g/cm^3)	0.277	0.298																			0.29		
	SWE (in)	1.384	1340												ļ					ļ			1.38	3.52
	depth (in)	6	6	8	5	5	6	7	7	5	4	4	6	4	3	5	4	5	4	3	5		5.10	12.95
3/10/2010	density (g/cm^3)	0.236	0.202												ļ					ļ		0.22		<u> </u>
	SWE (in)	1.415	0.807												ļ					ļ			1.11	2.82
	depth (in)	7	7	8	7	6	5	5	5	5	5	5	5	6	5	5	5	5	5	4	5		5.50	13.97
4/13/2010	density (g/cm^3)	0.225	0.219		1																	0.22	L	<u> </u>
	SWE (in)	1.127	1.096																				1.11	2.82

										Low	er Foo	thills													
Spur Dike	6 - 20 Mile																						average		
Date																						g/cm^3		cm	
11/6/2009	depth (in)	3	2	2	5	3	4	4	6	4	4	4	4	5	6	4	4	3	4	4	4		3.95	10.03	
	density (g/cm^3)	0.20	0.26																			0.23			
	SWE (in)	0.79	1.31																				1.05	2.66	
	depth (in)	6	8	4	8	8	10	6	8	10	8	6	5	7	7	7	9	5	6	8	6		7.10	18.03	
11/18/2009	density (g/cm^3)	0.28	0.30																			0.29			
	SWE (in)	1.98	1.50																				1.74	4.42	
	depth (in)	8	7	7	8	6	5	3	4	4	3	2	5	4	6	6	5	4	6	6	7		5.30	13.46	
12/2/2009	density (g/cm^3)	0.267	0.238																			0.25			
	SWE (in)	1.467	1.309																				1.39	3.53	
	depth (in)	2	4	4	3	3	3	3	5	3	3	8	5	4	2	3	5	3	3	6	5		3.85	9.78	
12/9/2009	density (g/cm^3)	0.21	0.272																			0.24			
	SWE (in)	1.048	2.037																				1.54	3.92	
	depth (in)	7	5	7	8	6	5	5	4	5	5	4	7	5	4	4	3	5	7	8	5		5.45	13.84	
12/16/2009	density (g/cm^3)	0.291	0.234																			0.26			
	SWE (in)	2.04	1.402																				1.72	4.37	
12/21/2009	depth (in)																								
	density (g/cm^3)																								
	SWE (in)																								
	depth (in)	6	5	7	6	3	6	5	3	5	3	2	5	8	7	3	5	3	5	5	3		4.75	12.07	
12/28/2009	density (g/cm^3)																								
	SWE (in)																								
	depth (in)	6	6	7	8	9	7	8	4	6	6	7	8	7	6	9	9	10	6	8	9		7.30	18.54	
1/6/2010	density (g/cm^3)	0.269	0.328																			0.30			
	SWE (in)	2.15	2.872																				2.51	6.38	
	depth (in)	5	8	12	8	5	10	10	7	5	8	6	8	6	7	5	10	8	7	4	9		7.40	18.80	
1/12/2010	density (g/cm^3)	0.27	0.178																			0.22			
	SWE (in)	1.621	0.89																				1.26	3.19	
	depth (in)	9	7	13	10	6	6	12	11	6	6	11	9	8	6	9	9	7	10	8	12		8.75	22.23	
1/27/2010	density (g/cm^3)	0.276	0.257																			0.27			
	SWE (in)	2.205	1.8							_						_							2.00	5.09	
0/0/0040	depth (in)	7	6	7	8	7	6	5	6	7	5	6	6	7	6	5	7	8	8	7	5		6.45	16.38	
2/9/2010	density (g/cm^3)	0.294	0.26																			0.28			
	SWE (in)	2.058	1.948	10	_			40	_							<u> </u>					_	ļ	2.00	5.09	
0/44/0040	depth (in)	5	9	13	7	9	7	10	9	9	9	7	8	8	8	7	7	6	7	5	6	0.00	7.80	19.81	
3/11/2010	density (g/cm^3)	0.2	0.353		ļ																	0.28	0.0=		
	SWE (in)	2.25	2.295					-	_			_	-				_	-	_		_	ļ	2.27	5.77	
4/40/0040	depth (in)	9	7	9	8	8	8	7	9	8	8	8	7	9	9	6	6	7	8	8	9	0.04	7.90	20.07	
4/13/2010	density (g/cm^3)	0.316	0.313					-	-			-							-			0.31	0.44	0.40	
	SWE (in)	2.367	2.504																				2.44	6.19	

										Lowe	er Foo	othills												
Meltwater	19																						average	
Date																						g/cm^3	in	cm
11/3/2009	depth (in)	5	4	4	5	6	5	5	4	4	5	4	6	3	6	5	6	5	5	5	5	Ĭ	4.85	12.32
	density (g/cm^3)	0.12	0.15																			0.13		
	SWE (in)	0.72	0.87																				0.80	2.02
11/17/2009	depth (in)	3	4	4	5	5	5	6	4	4	4	4	6	3	6	5	3	6	4	5	4		4.50	11.43
	density (g/cm^3)	0.15	0.24																			0.19		
	SWE (in)	0.75	1.20																				0.97	2.47
	depth (in)	5	5	8	6	6	4	7	5	4	4	3	3	2	2	4	6	5	6	6	4		4.75	12.07
12/1/2009	density (g/cm^3)	0.324	0.279																			0.30		
	SWE (in)	1.621	2.927																				2.27	5.78
	depth (in)	8	4	3	7	5	7	7	7	5	6	4	5	7	5	5	8	5	5	5	4		5.60	14.22
12/8/2009	density (g/cm^3)	0.249	0.299																			0.27		
	SWE (in)	1.621	1.347																				1.48	3.77
12/15/2009	depth (in)	8	10	12	12	10	9	6	5	5	4	3	6	5	8	7	7	9	9	10	8		7.65	19.43
	density (g/cm^3)	0.248	0.228																			0.24		
	SWE (in)	0.993	1.367																				1.18	3.00
12/22/2009	depth (in)	10	7	7	7	7	7	11	8	9	7	7	8	6	8	6	6	5	6	7	6		7.25	18.42
	density (g/cm^3)	0.275	0.316																			0.30		
	SWE (in)	1.515	2.054																				1.78	4.53
	depth (in)	2	3	5	3	7	7	9	7	4	3	7	5	6	7	5	5	4	5	5	3		5.10	12.95
12/30/2009	density (g/cm^3)	0.219	0.286																			0.25		
	SWE (in)	0.766	1.573																				1.17	2.97
	depth (in)	8	8	8	7	9	12	11	9	8	7	8	9	11	9	11	10	9	7	7	7		8.75	22.23
1/6/2010	density (g/cm^3)	0.304	0.29																			0.30		
	SWE (in)	3.037	2.027																				2.53	6.43
	depth (in)	11	11	5	9	8	7	7	10	8	4	8	11	11	6	7	10	11	6	8	13		8.55	21.72
1/13/2010	density (g/cm^3)	0.321	0.266																			0.29		
	SWE (in)	3.212	2.13																				2.67	6.78
	depth (in)	4	4	6	9	8	9	5	5	2	2	4	6	4	5	4	4	6	6	6	5		5.20	13.21
2/10/2010	density (g/cm^3)	0.252	0.252																			0.25		
	SWE (in)	1.766	1.515																				1.64	4.17
	depth (in)	7	5	5	10	8	8	5	11	9	7	9	7	4	8	7	5	7	8	8	7		7.25	18.42
3/11/2010	density (g/cm^3)	0.351	0.268									ļ									ļ	0.31		
<u></u>	SWE (in)	2.985	1.34																				2.16	5.49
	depth (in)	12	9	9	9	12	13	14	11	10	9	11	12	12	12	14	13	13	14	12	10	L	11.55	29.34
4/15/2010	density (g/cm^3)	0.292	0.297																			0.29		
	SWE (in)	2.559	2.82																				2.69	6.83

APPENDIX C. ADNR SNOW DATA SUMMARY

The following table reports a summary of snow information obtained by ADNR staff.

							I			I					
	Nov 2 - 6		Nov 16 - 20			No	ov 30 - Dec	2 4		Dec 7 - 11		Dec 14 - 18			
	Depth	Density	SWE	Depth	Density	SWE	Depth	Density	SWE	Depth	Density	SWE	Depth	Density	SWE
	(in)	(g/cm^3)	(in)	(in)	(g/cm^3)	(in)	(in)	(g/cm^3)	(in)	(in)	(g/cm^3)	(in)	(in)	(g/cm^3)	(in)
Eastern Coastal Area															
ANFO Pad	2.1			3.0	0.40	1.2	4.1	0.24	1.0	3.4	0.34	1.1	6.6	0.32	2.4
DS 16	5.7	0.35	2.1	5.4	0.45	3.3	6.9	0.34	2.4	5.9	0.31	2.0	8.7	0.32	3.2
UAF 411 mi	4.3	0.20	0.9	4.5	0.24	1.5	9.7	0.28	2.2	7.1	0.33	2.9	6.7	0.25	1.6
Term Well A	5.8	0.26	2.2	3.8	0.21	8.0	4.8	0.23	1.1	4.9	0.25	1.3	6.1	0.24	1.2
P Pad	4.1	0.19	0.9	4.3	0.23	0.9	4.9	0.13	0.6	6.1	0.28	1.8	9.5	0.30	2.8
T Pad	3.9	0.23	1.1	3.9	0.30	1.4	5.0	0.23	1.2	3.9	0.14	0.7	5.5	0.33	3.2
Area Averages	4.3	0.24	1.4	4.2	0.30	1.5	5.9	0.24	1.4	5.2	0.27	1.6	7.1	0.29	2.4
Western Coastal Area															
S Pad	4.1			5.5	0.39	2.3	5.3	0.19	0.9	4.0	0.19	0.9	6.3	0.24	1.3
DS-1J	3.6	0.19	8.0	7.5	0.29	2.3	6.6	0.45	4.4	4.1	0.28	1.2	9.6	0.35	3.7
UGNU Pad	4.3	0.29	1.3	4.1	0.28	1.3	4.9	0.37	2.6	4.1	0.20	0.9	6.5	0.36	2.7
Palm 2	5.4	0.25	1.5	4.9	0.21	1.1	7.2	0.32	2.0	5.8	0.28	1.6	6.6	0.22	1.4
DS-2L (ASTAC)	5.8	0.19	1.3	5.3	0.21	1.3	5.4	0.20	1.3	5.0	0.25	1.2	7.5	0.23	1.6
Area Averages	4.6	0.23	1.2	5.4	0.28	1.6	5.9	0.30	2.2	4.6	0.24	1.2	7.3	0.28	2.1
Lauren Faathilla Ansa															
Lower Foothills Area	1 4 0	0.00	1.0	7.4	0.00	4.7	F 2	. 0.05	4.4	2.0	0.04	4.5	T = -	: 0.00	
SpurDike 6-20 Mi	4.0	0.23	1.0	7.1	0.29	1.7	5.3	0.25	1.4	3.9	0.24	1.5	5.5	0.26	1.7
30 Mile 52 Mile	2.8 9.3	0.20	1.8	3.5 8.8	0.15 0.15	0.6	4.6 9.6	0.18 0.18	1.1 1.8	4.5 11.9	0.22 0.24	0.9 3.1	4.8 13.2	0.27 0.22	1.0 3.2
62 Mile	9.3	0.20	1.8	8.6	0.15	1.5	8.8	0.18	1.3	7.8	0.24	2.1	9.0	0.22	3.2 1.6
Meltwater 19	4.9	0.20	0.8	4.5	0.19	1.0	4.8	0.21	2.3	7.8 5.6	0.24	2.1 1.5	7.7	0.21	1.0
								0.30		6.7	0.24			•	1.7
Area Averages	6.0	0.19	1.4	6.5	0.20	1.2	6.6	0.22	1.6	6.7	0.24	1.8	8.0	0.24	1.7
Upper Foothills Area															
318 Mile	12.2	0.21	2.6	12.8	0.22	2.7	13.3	0.21	2.9	11.9	0.19	2.4	14.4	0.23	3.2
Pump 3	9.9	0.22	2.2	10.8	0.22	2.4	9.5	0.24	2.0	10.3	0.25	2.5	12.0	0.20	2.1
Sag R. DOT	10.3	0.24	2.4	10.1	0.23	2.0	10.1	0.25	1.6	9.3	0.22	2.8	10.9	0.26	2.8
Slope Mountain	9.3	0.14	1.2	8.5	0.21	1.3	8.7	0.21	1.5	6.9	0.21	1.7	8.2	0.13	1.0
Area Averages	10.4	0.20	2.1	10.5	0.22	2.1	10.4	0.23	2.0	9.6	0.22	2.3	11.4	0.20	2.3

	Dec 19 - 23				Dec 28 - 31			Jan 4 - 8		Jan 11 - 13		
	Depth (in)	Density (g/cm^3)	SWE (in)	Depth (in)	, ,	SWE (in)	Depth (in)	Density (g/cm^3)	SWE (in)	Depth (in)	Density (g/cm^3)	SWE (in)
Eastern Coastal Area	, ,	,	<u> </u>	` '	,	. ,	` ,	,	, ,	` '	,	` '
ANFO Pad	6.1	0.34	2.1									
DS 16												
UAF 411 mi	7.2	0.34	2.9									
Term Well A	6.2	0.24	1.1									
P Pad												
T Pad	9.0	0.29	2.2									
Area Averages	7.1	0.3	2.0									
Western Coastal Area												
S Pad			:									
DS-1J		<u> </u>	:									
UGNU Pad												
Palm 2		<u>. </u>										
DS-2L (ASTAC)				5.4	0.21	0.9						
Area Averages				5.4	0.2	0.9						
Lower Foothills Area												
SpurDike 6-20 Mi		:	:	4.8			7.3	0.30	2.5	7.4	0.22	1.3
30 Mile	6.2	0.21	1.1	2.8	0.20	0.6	6.2	0.30	1.6	7.3	0.22	1.6
52 Mile	12.5	0.21	2.7	10.8	0.20	1.9	11.9	0.10	2.6	14.0	0.20	2.2
62 Mile	9.2	0.16	1.4	9.8	0.17	2.0	11.3	0.23	2.4	9.8	0.30	2.6
Meltwater 19	7.3	0.30	1.8	5.1	0.25	1.2	8.8	0.30	2.5	8.6	0.29	2.7
Area Averages	8.8	0.2	1.7	6.6	0.2	1.4	9.1	0.2	2.3	9.4	0.2	2.0
Alea Avelages	0.0	0.2	1.7	0.0	0.2	1.4	3.1	0.2	2.0	3.4	0.2	2.0
Upper Foothills Area												
318 Mile	14.2	0.23	2.7	14.0	0.24	3.0	13.9	0.13	2.0	17.2	0.21	3.4
Pump 3	10.8	0.25	2.6	10.1	0.25	2.3	10.8	0.27	3.7	15.9	0.13	1.7
Sag R. DOT	9.8	0.30	2.8	8.6	0.23	2.0	8.7	0.27	2.3	11.7	0.20	2.3
Slope Mountain	7.0	0.18	1.2	7.4	0.17	1.0	7.7	0.24	1.2	10.4	0.18	1.7
Area Averages	10.5	0.2	2.3	10.0	0.2	2.0	10.2	0.2	2.3	13.8	0.2	2.3

		Jan 26 - 29			Feb 9 - 10		N	March 9 - 12			April 13-15	
	Depth (in)	Density (g/cm^3)		Depth (in)	Density (g/cm^3)	SWE (in)	Depth (in)	Density (g/cm^3)	SWE (in)	Depth (in)	Density (g/cm^3)	SWE (in)
Eastern Coastal Are	a											
ANFO Pad												
DS 16												
UAF 411 mi												
Term Well A												
P Pad												
T Pad												
Area Averages												
Western Coastal Ar	ea											
S Pad												
DS-1J												
UGNU Pad												
Palm 2												
DS-2L (ASTAC)												
Area Averages												
Lower Foothills Are												
SpurDike 6-20 Mi	8.8	0.27	2.0	6.5	0.28	2.0	7.8	0.33	2.3	7.9	0.31	2.4
30 Mile	6.3	0.27	1.5	4.0	0.28	1.4	5.1	0.33	2.3 1.1	5.5	0.31	1.1
52 Mile	14.3	0.28	4.3	4.0	0.29	1.4	5.1	0.22	1.1	5.5	0.22	1.1
62 Mile	9.5	0.26	2.7									
Meltwater 19	9.5	0.20	2.1	5.2	0.25	1.6	7.3	0.31	2.2	11.6	0.30	2.7
Area Averages	9.7	0.3	<u>:</u>	5.2	0.23	1.7	6.7	0.3	1.8	8.3	0.3	2.1
Alea Avelages	9.1	0.5	<u> </u>	5.2	0.5	1.7	0.7	0.5	1.0	0.5	0.5	2.1
Upper Foothills Are	a											
318 Mile	16.6	0.21	3.1	14.6	0.20	2.8	23.0	0.27	6.1			
Pump 3	14.2	0.22	3.2	13.6	0.20	3.3						
Sag R. DOT	11.8	0.28	3.0									
Slope Mountain	9.8	0.30	2.6									
Area Averages	13.1	0.3	3.0	14.1	0.2	3.0	23.0	0.3	6.1			

APPENDIX D. ELEVATION SURVEY FORMS

The following form reports the elevation survey information obtained during field sampling.

Arctic Transportation Networks Form F-011: Elevation Survey Form

Project ID:ATN ProjectSite Location/Lake ID:L9312Survey Purpose:Water-Level ElevationsDate: 4/15/2010Time: 11:00

Location:	Lake L9312, lo	ocated south	east of Alpine pa	d, survey by p	ump house b	enchmarks		
Survey objective:		Determine	FWS Elevation.	Weather Ob	servations:			
Instrument Type:	Leica N	A720	Instrument ID:	5482372 (G	WS owned)			•
Rod Type:	Fiberg	lass	Rod ID:	er Glass	Cold, Overca	ast. Sliaht b	reeze	
		Bench Ma	rk Information:			Survey Tea		
Name	Agency Responsible	Elevation (ft)	Latitude (dd-mm.mmm)	Long (ddd-mn	n.mmm)	Jeff Mur	Lilly, Chris (LCMF)	
L9312"P"	CP	11.73	na	n	а			
Station	BS (ft)	HI (ft)	FS (ft)	Elevation (fasl)	Distance (ft)	Horizontal Angle	Vertical Angle	Remarks
TBM "P"	1.341	13.071		11.73				Top of inlet pipe support
TBM "O"		13.071	1.599	11.47				Top of inlet pipe support. BM Elev=11.44'
99-32-59		13.071	-1.148	14.22				Top of Pumphouse SE VSM. BM Elev = 14.53
L9312 WL		13.071	5.810	7.26				
L9312 Ice		13.071	5.389	7.68				
				Turn on L931	2 Ice			
L9312 Ice	5.35	13.030						
L9312 WL		13.030	5.77	7.26				WL = 7.26
99-32-59		13.030	-1.571	14.60				
TBM"O"		13.030	1.549	11.48				
TBM"P"		13.030	1.300	11.73				close survey to 0.01'

Abbreviations: backsight, BS; degrees, dd; feet, ft; feet above mean sea level, fasml; foresight, FS; height of instrument, HI; minutes, mm; seconds, ss; BP Mean Sea Level, BPMSL

APPENDIX E. LAKE HYDROLOGICAL MEASURMENTS

The following form reports physical measurements pertaining to lake ice obtained during field sampling.

Arctic Transportation Networks Project FORM F-005: WATER-LEVEL MEASUREMENT FORM

Lake or Site ID: Badami NAD83 Local Number: Survey ID

All measurements in feet, Latitude Longitude unless noted Elevation (ft) (dd-mm.mmm) (dd-mm.mmm) 21.00 N 70° 7.775' W 146° 59.956′

Vertical-Datum Corrections, reference survey notes in site folders

ABBREVIATIONS

BOI, bottom of ice

Calib, used to calibrate PT

IS, ice surface LB, lake bottom LS, land surface MP, measuring point N/A, not available

WS, water surface

Date	Time	Method	Snow Depth	Total Depth IS to LB	Estimated Error	Ice Thickness (IS to BOI)	Freeboard (IS to WS)	WS Elevation	IC Flavation	Domarko
			Бериі			, ,	,	WS Elevation	IS Elevation	Remarks
4/13/10	17:20	Tape	8	28.46	+/- 0.01	5.88	0.29			

Collected Data Values

Lake-Full Elevation = measured at staff gage or near vertical benchmark after lake outflow ceased following spring snowmelt

Freeboard (FB) = Height of ice level over water level in open hole

Ice Thickness (IT) = Measured distance between top and bottom of ice

Total Depth (TD) = Measured distance from water surface to lake bottom Estimated Error = Field estimate of water level measurement error

Calculated Values

Ice Surface (IS) Elevation = Water Elevation + Freeboard Ice Bottom (IB) Elevation = Ice Surface Elevation - Ice Thickness

Arctic Transportation Networks Project

FORM F-005: WATER-LEVEL MEASUREMENT FORM

Lake or Site ID: Toolik Lake

Local Number: Survey ID NAD83

Vertical-Datum Corrections, reference survey notes in site folders

ABBREVIATIONS

BOI, bottom of ice

Calib, used to calibrate PT

IS, ice surface LB, lake bottom LS, land surface MP, measuring point N/A, not available

WS, water surface WD, water depth

			_			Ice				
			Snow	Total Depth	Estimated	Thickness	Freeboard		Latitude	Longitude
Date	Time	Method	Depth	IS to LB	Error	(IS to BOI)	(IS to WS)	WD	(dd-mm.mmm)	(dd-mm.mmm)
1/14/10	13:27	Tape	0.417'	19.383'	+/- 0.01	2.4'	0.083'	19.3'	Marked	W/ Lathe
2/11/10	11:30	Tape	0.807'	21.55'	+/- 0.01	2.72'	0.0328'	21.52	Marked	W/ Lathe
3/7/10	10:00	Tape	1.0'	25.05'	+/- 0.01	3.0'	.07'	22.05'	Marked	W/ Lathe
3/7/10	10:20	Tape	0.45	49.45	+/- 0.01	4.00	0.25	49.20	68 37.784	149 36.689
3/7/10	22:40	Tape	0.42	31.75	+/- 0.01	3.63	0.15	31.60	68 37.834	149 37.105
4/11/10	10:50	Tape	0.92	28.60	+/- 0.01	3.40	0.10	28.50	Marked	W/ Lathe
4/11/10	12:00	Tape	0.53	49.27	+/- 0.01	4.20	0.18	49.08	68 37.784	149 36.689
4/11/10	11:15	Tape	0.69	50.00	+/- 0.01	3.60	0.75	49.25	68 37.926	149 36.670

Collected Data Values

Lake-Full Elevation = measured at staff gage or near vertical benchmark after lake outflow ceased following spring snowmelt

Freeboard (FB) = Height of ice level over water level in open hole

Ice Thickness (IT) = Measured distance between top and bottom of ice

Total Depth (TD) = Measured distance from water surface to lake bottom

Estimated Error = Field estimate of water level measurement error

Calculated Values

Ice Surface (IS) Elevation = Water Elevation + Freeboard

Ice Bottom (IB) Elevation = Ice Surface Elevation - Ice Thickness

APPENDIX F. WATER QUALITY SAMPLING FORMS

The following forms report the water quality data collected during field sampling.

Arctic Transportation Networks Project Form F-004a: Water Quality Field-Sampling General Arctic Transportation Networks Project ID: Site Location/Lake ID: Badami Reservoir Sample Purpose: **Lake Water Quality** Date: 4/13/10 Time: 17:50 **FIELD MEASUREMENTS** GPS Coord. Northing: Easting: W 146° 59.956' Datum: NAD83 N 70° 7.775' Jeff Murray Time: 17:50 Measurements By: Ice Thickness (ft): 5.88 Water Depth (ft): 28.17 Freeboard (ft): Snow Depth (ft): 0.26 0.29 Elev. (BPMSL +/- .02): Survey By: Date: Time: Michael Lilly Sample Depths BWS (ft): 1 n/a na Water Sampling By: Date: Time: na WATER QUALITY METER INFORMATION Calibration Information Pre-Sampling Post-Sampling Meter Make/Model Serial No. QAQC Check QAQC Check Parameter (s) Owner GWS 07L100864 Conductivity/Temp YSI30 **PASS PASS** BLM Hach RLDO LDO101 **PASS PASS** Temp/LDO Field Measurements Parameters 17:50 17:52 17:54 17:58 Time: 17:56 18:00 18:02 18:04 18:06 18:08 7 8 9 Depth BWS (ft): 6 10 12 14 16 18 20 0.6 0.4 0.5 0.4 0.4 0.4 Temp (°C): 0.4 0.5 0.6 0.7 254.0 246.2 242.3 240.7 239.0 238.1 236.5 235.4 Conductivity (ųS/cm): 244.3 237.2 DO (mg/L) DO %Saturation **Parameters Field Measurements** 18:10 18:12 18:14 18:16 18:18 18:20 18:22 Time: Depth BWS (ft): 22 25 27 24 26 28 28.5 Temp (°C): 0.7 8.0 8.0 8.0 8.0 8.0 0.9 Conductivity (yS/cm): DO (mg/L) DO %Saturation

6/15/10

6/15/10

Date:

Date:

Remarks: DO and %DO was measured, but the Hach RLDO did not pass post calibration check

Jeff Murray

Kristie Hilton

Field-Form Filled Out By:

QAQC Check By:

F-2

APPENDIX G. WATER QUALITY METER CALIBRATION FORMS

The following forms report results from the meter calibration checks.

University of Alaska Fairbanks, Water and Environmental Research Center Form F-004e: Water Quality Meter Calibration Form Project ID: **Arctic Transportation Network** Site Location/Lake ID: Toolik/Badami Lake Water Quality Sample Purpose: WATER QUALITY METER INFORMATION Meter Make: Hach Make: RLDO Owner: BLM S/N: LDO101 **CALIBRATION AND QUALITY ASSURANCE INFORMATION** Pre-Sampling QA Parameter Date Time Standard Lot No. Ехр. Meter Reading Pass/Fail Saturated O₂ 3/11/10 nr Bubbled Nanopure 96.2% (11.58 mg/L @ 6.9C) Pass na na 3/11/10 1756 Jul-14 Zero O₂ nr Hanna HI7040 0.3% (0.04 mg/L @ 6.5C) Pass Post-Sampling QA Parameter Date Time Standard Lot No. Ехр. Meter Reading Pass/Fail Saturated O₂ 4/17/10 nr Bubbled Nanopure na na 99.6% (8.94 mg/L @ 18.0C) Pass 4/17/10 Zero O₂ nr Hanna HI7040 1756 Jul-14 12.4% (1.15 mg/L @ 18.9C) Fail Remarks:

Date: 6/10/2010

Date: 6/15/2010

JM

KMH

Field-Form Filled Out By:

QAQC Check By: