Snow-Course and Lake Survey Data for Selected Locations: November 2009

NRCS climate station at Toolik Camp, photo by Jeff Derry.

Jeff Derry, Kristie Hilton, Horacio Toniolo, and Michael Lilly

by

December 2009
Arctic Transportation Networks Project
Report GWS.TR.09.06

Snow-Course and Lake Survey Data for Selected Locations: November 2009

by

Jeff Derry¹, Kristie Hilton¹, Horacio Toniolo², Michael Lilly¹

A report on research sponsored by:

- U.S. Department of Energy
- National Energy Technology Laboratory
- Alaska Department of Natural Resources.
- ConocoPhillips Alaska, Inc.
- Bureau of Land Management
- Geo-Watersheds Scientific

December 2009

Arctic Transportation Networks Project

Report Number GWS.TR.09.06

¹Geo-Watersheds Scientific, Fairbanks, AK

²University of Alaska Fairbanks, Water and Environmental Research Center

Recommended Citation:
Derry, J., Hilton, K., Toniolo, H., and Lilly, M. 2009. Snow-Course and Lake Survey Data for Selected Locations: November 2009. Geo-Watersheds Scientific, Report GWS.TR.09.06, Fairbanks, Alaska. 7 pp.
Fairbanks, Alaska
December 2009
For additional information write to:
Geo-Watersheds Scientific

PO Box 81538

Fairbanks, Alaska 99708 mlilly@gwscientific.com

TABLE OF CONTENTS

TABLE OF CONTENTSi
LIST OF FIGURESi
LIST OF TABLESi
DISCLAIMERiii
CONVERSION FACTORS, UNITS, WATER QUALITY UNITS, VERTICAL AND
HORIZONTAL DATUM, ABBREVIATIONS AND SYMBOLSiv
ACKNOWLEDGEMENTSviii
INTRODUCTION
TRIP OBJECTIVES
PROCEDURES
SELECTED RESULTS
SUMMARY6
REFERENCES
LIST OF FIGURES
Figure 1. Snow-course locations visited in November by ATN project participants
Figure 2. Map of DNR snow and soil temperature sampling sites (DNR, 2009). Sites marked in
red were visited by ATN participants during the November field campaign to conduct
snow-courses
Figure 3. Plot of water level at L9312 through November 18, 2009
LIST OF TABLES
Table 1. November snow sampling locations, locations in bold indicate site is co-located with
DNR snow and soil temperature sampling sites 4
Table 2. Comparison of average snow depth, density, and SWE at co-located ATN and DNR
snow sampling sites
Table 3. Average snow depth, density and SWE for all locations visited by ATN personnel in
November5

LIST OF APPENDICES

APPENDIX A.	SNOW SURVEY FORMS	A
APPENDIX B.	ADNR SNOW DATA	Е
APPENDIX C.	L9312 ELEVATION SURVEY FORM	C
	LAKE ICE PHYSICAL MEASUREMENTS	

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The contents of this report reflect the views of the authors, who are responsible for the accuracy of the data presented herein. The contents of the report do not necessarily reflect the views of policies of DOE or any local sponsor. This work does not constitute a standard, specification, or regulation.

CONVERSION FACTORS, UNITS, WATER QUALITY UNITS, VERTICAL AND HORIZONTAL DATUM, ABBREVIATIONS AND SYMBOLS

Conversion Factors

Multiply	Ву	To obtain
	<u>Length</u>	
inch (in.)	<u>25.4</u>	millimeter (mm)
inch (in.)	2.54	centimeter (cm)
foot (ft)	0.3048	meter (mm)
mile (mi)	1.609	kilometer (km)
	<u>Area</u>	
Acre	43559.826	square feet (ft²)
Acre	0.407	hectare (ha)
square foot (ft²)	2.590	square mile (mi ²)
square mile (mi ²)	2.590	square kilometer (km²)
	<u>Volume</u>	
gallon (gal)	3.785	liter (L)
gallon (gal)	3785	milliliter (mL)
cubic foot (ft³)	23.317	liter (L)
Acre-ft	1233	cubic meter (m ³)
	Velocity and Discharge	
foot per day (ft/d)	0.3048	meter per day (m/d)
Square foot per day (ft²/d)	.0929	square meter per day (m²/d)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m³/sec)
	Hydraulic Conductivity	
foot per day (ft/d)	0.3048	meter per day (m/d)
foot per day (ft/d)	0.00035	centimeter per second
		(cm/sec)
meter per day (m/d)	0.00115	centimeter per second
		(cm/sec)
	Hydraulic Gradient	
foot per foot (ft/ft)	5280	foot per mile (ft/mi)
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km)
	Pressure	
pound per square inch (lb/in²)	6.895	kilopascal (kPa)

Units

For the purposes of this report, both English and Metric (SI) units were employed. The choice of "primary" units employed depended on common reporting standards for a particular property or parameter measured. Whenever possible, the approximate value in the "secondary" units was also provided in parentheses. Thus, for instance, snow depth was reported in inches (in) followed by the value in centimeters (cm) in parentheses.

Physical and Chemical Water-Quality Units:

Temperature:

Water and air temperature is given in degrees Celsius (°C) and in degrees Fahrenheit (°F). Degrees Celsius can be converted to degrees Fahrenheit by use of the following equation:

 $^{\circ}F = 1.8(^{\circ}C) + 32$

Snow Water Equivalent (SWE):

Water content of a given column of snow is determined by knowing the depth of the snowpack and density.

$$SWE = d_s * \rho_s / p_w$$

where:

 d_s = snow depth

 ρ_s = snow density

 p_w = density of water.

Electrical Conductance (Actual Conductivity and Specific Conductance):

In this report conductivity of water is expressed as Actual Conductivity [AC] in microSiemens per centimeter (μ S/cm). This unit is equivalent to micromhos per centimeter. Elsewhere, conductivity is commonly expressed as Specific Conductance at 25°C [SC25] in μ S/cm which is temperature corrected. To convert AC to SC25 the following equation can be used:

v

Error! Bookmark not defined. $SC25 = \frac{AC}{1 + r(T - 25)}$

where:

 $SC25 = Specific Conductance at 25°C, in \mu S/cm$

 $AC = Actual Conductivity, in \mu S/cm$

r = temperature correction coefficient for the sample, in ${}^{\circ}$ C

T = temperature of the sample, in °C

Milligrams per liter (mg/L) or micrograms per liter (µg/L):

Milligrams per liter is a unit of measurement indicating the concentration of chemical constituents in solution as weight (milligrams) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter. For concentrations less than 7,000 mg/L, the numerical value is the same as for concentrations in parts per million (ppm).

Millivolt (mV):

A unit of electromotive force equal to one thousandth of a volt.

Vertical Datum:

"Sea level" in the following report refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929), a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called *Sea Level Datum of 1929*.

Horizontal Datum:

The horizontal datum for all locations in this report is the North American Datum of 1983 or North American Datum of 1927.

Abbreviations, Acronyms, and Symbols

AC Actual conductivity Alaska's Arctic Slope AAS

ADOT&PF Alaska Department of Transportation and Public Facilities

ADNR Alaska Department of Natural Resources **ASTM** American Society for Testing and Materials

atmospheres atm

Arctic Transportation Networks ATN

Celsius \mathbf{C} centimeters cm DO

Dissolved oxygen

Department of Natural Resources DNR

digital voltage multi-meter DVM

F Fahrenheit (°F).

ft feet

GWS Geo-Watersheds Scientific

in inches $\frac{kg}{km^2}$ **Kilograms**

square kilometers

kilopascal kPa

lb/in² pounds per square inch

meters m

milligrams per liter mg/L micrograms per liter μg/L

 $\widetilde{\text{mi}}^2$ square miles millimeters mm

microsiemens per centimeter μS/cm

mV Millivolt

National Geodetic Vertical Datum **NGVD NRCS** Natural Resources Conservation Service **NWIS** National Water Information System

ORP oxygen-reduction potential

parts per million ppm QA quality assurance QC quality control Sagavanirktok River Sag

SC25 specific conductance at 25°C

snow water equivalent **SWE**

UAF University of Alaska Fairbanks

U.S. Army Corps of Engineers, Alaska District **USACE**

U.S. Geological Survey **USGS**

WERC Water and Environmental Research Center

WWW World Wide Web

YSI Yellow Springs Instruments

ACKNOWLEDGEMENTS

This material is based upon work supported by the Department of Energy [National Energy and Technology Laboratory] under Award Number DE-FE0001240. Department of Natural Resources provided background data for snow survey sites in the study area.

Snow-Course and Lake Survey Data for Selected Locations: November 2009

INTRODUCTION

Geo-Watersheds Scientific (GWS), University of Alaska Fairbanks (UAF), and Idaho National Laboratory (INL), together with project cooperators, initiated a study in October 2009 to collect field data for the development of management tools for various aspects of Arctic Transportation Networks (ATN). Some of the variables collected include data from 10 meteorological stations (including snow-depth, soil temperature, unfrozen soil moisture, precipitation, and wind radiation data), snow depth and density data, water-quality parameters and water quantity measurements on selected lakes and reservoirs.

Snow depth is an important variable with regulatory agencies since tundra travel operations in the Coastal Tundra Area commence once a spatially consistent snow depth of 6 in (15 cm) is maintained. Soil temperatures are equally crucial since 23° F (-5°C) at a depth of 12 in (30 cm) is also a requirement (Bader, 2004). Many meteorological factors determine when these conditions will be met. An established network of meteorological stations and increased snow measurements – both amount collected and number of sites visited – will increase the understanding of the timing and amount of snow distributions and will assist in the development of predictive and management tools.

TRIP OBJECTIVES

The primary goals of the November trip were to collect snow depth and density data (i.e. conduct snow-courses) from Toolik Camp north to the Coast Plain (Figure 1) with some of these sites being co-located with DNR soil and snow sampling locations (Figure 2), install a weather station at 2L-Pad, hold meetings with Department of Natural Resources personnel to discuss snow data collection methods, install water level sensors (pressure transducers) at L9312 station, and obtain lake level survey and physical data from L9312. This data will help resource developers and management agencies evaluate snow conditions in the region. A project workplan was distributed before the trip outlining the sampling schedule (Derry and others, 2009), however,

logistical, personnel, and weather constraints may limit the amount of time available in the field for sampling.

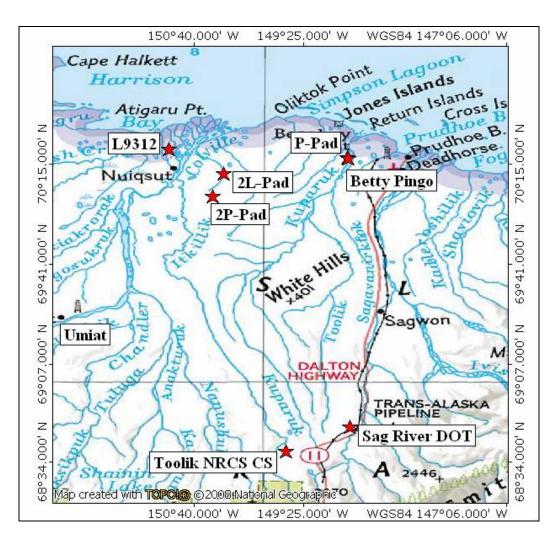


Figure 1. Snow-course locations visited in November by ATN project participants.

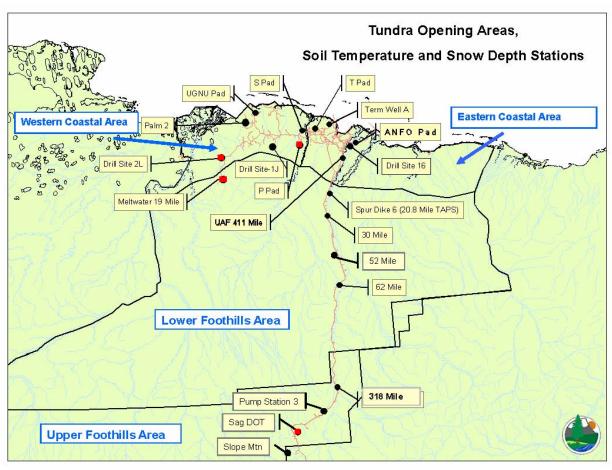


Figure 2. Map of DNR snow and soil temperature sampling sites (DNR, 2009). Sites marked in red were visited by ATN participants during the November field campaign to conduct snow-courses.

PROCEDURES

Small-scale snow depth measurements were conducted in "L" shaped patterns on lake surfaces and/or tundra surfaces at predetermined locations. Snow depth measurements were taken every 3.3 ft (1 m) for 82.0 ft (25 m), then turning 90 degrees, and continuing for another 82.0 ft (25 m). Snow samples were also collected for density measurements with an Adirondack snow sampler. Five densities were collected at each location and averaged to establish a representative density. A number of sampling sites are co-located with DNR snow and soil sampling sites to compare sampling methods. The DNR method involves collecting 20 depth measurements along a transect spaced at 1 ft (0.3 m) increments and two density measurements collected with a Federal Sampler. The objective is to determine if the results vary significantly and whether or not the data-sets can be integrated allowing an increased temporal and spatial coverage.

At Lake L9312, a hole was drilled through the ice with a 10-inch diameter ice auger powered by a cordless drill. Physical measurements of depth (lake bottom to water surface), freeboard (water surface to top of ice), ice thickness (bottom of ice to top of ice), and snow depth (top of ice to top of snow, measured at the hole where snow was cleared to drill) were taken with a weighted flexible measuring tape. The precision with which physical measurements are reported takes into account field conditions

SELECTED RESULTS

Snow courses were conducted at eight different locations during the November trip with four of these locations being co-located with DNR sampling sites (Table 1).

Table 1. November snow sampling locations, locations in **bold** indicate site is co-located with **DNR** snow and soil temperature sampling sites.

		pring sivest	l I
station	elevation	north latitude	west longitude
Station	ft	NAD 83	NAD 83
Meltwater 19	200	70 03.853	150 26.779
DS-2L (ASTAC)	112	70 11.481	150 19.397
P Pad Access	10	70 16.967	148 54.807
Sag River DOT	1630	68 45.686	148 52.746
Betty Pingo (NRCS Site)	10	70 16.772	148 53.741
L9312-Tundra Surface	7	70 19.995	150 56.918
L9312-Lake Surface	7	70 20.008	150 57.083
NRCS Soil Monitoring			
Site (Toolik Camp)	2362	68 37.366	149 36.598

Results compare well for the four co-located sites (Table 2). The greatest difference in snow depth was at P-Pad where the ATN project method resulted in an average of 6.0 in (15.1 cm) and DNR results averaged 4.3 in (10.9 cm). The average depth for the four locations collected via the ATN method is 6.8 in (17.2 cm) and the DNR average is 6.0 in (15.3 cm), a difference of 0.8 in (2.0 cm), yet the coastal region only reports 5.6 in (14.1 cm) vs. 4.7 in (11.9 cm), respectively. The variability in snow depth and density resulted in no greater difference in SWE estimations between the two methods than 0.3 in (0.8 cm). The standard deviation in snow depth tended to be greater for the ATN method likely since this method collects more than double the amount of depths than the DNR method (50 depths vs. 20 depths).

Table 2. Comparison of average snow depth, density, and SWE at co-located ATN and DNR snow sampling sites.

	5	Sag Riv	er DOT Meltwa			ater 19	9	P Pad				DS-2L (ASTAC)			.C)	
	G۷	٧S	DI	NR	G'	WS	D	NR	G'	WS	D	NR	G'	WS	D	NR
	in	cm	in	cm	in	cm	in	cm	in	cm	in	cm	in	Cm	in	cm
depth	10.3	26.3	10.1	25.5	5.1	13.1	4.5	11.4	6.0	15.1	4.3	10.9	5.6	14.2	5.3	13.3
depth																
standard																
deviation	1.9	4.9	2.1	5.3	1.8	4.5	1.0	2.5	2.0	5.0	1.0	2.5	1.5	3.9	0.6	1.5
density	0.2	22	0	23	0	.26	0.	.19	0	.19	0	.23	0	.24	0.	.21
SWE	2.3	5.8	2.0	5.0	1.3	3.4	1.0	2.5	1.2	2.9	0.9	2.3	1.3	3.4	1.3	3.2

Snow-course sites visited by ATN personnel (Table 3) show that snow depths are greater to the north by approximately 4.5 in (11.4 cm); this trend is also seen with the DNR data (Appendix B). Deeper snow was measured at L9312 (near Alpine) than at Meltwater 19, DS-2L, P-Pad, and Betty Pingo further to the east (8.9 in (22.7 cm) vs. 5.1 in (13.1 cm), 5.6 in (14.2 cm), 6.0 in (15.1 cm), 6.9 in (17.6 cm), respectively). The average depth of all sites was 6.9 in (17.6 cm) with a density of 0.25. At L9312, the average snow depths on the lake surface were approximately one-third of those reported at the nearby tundra surface. Lake surface snow samples also had a greater density (0.30 vs. 0.24) than the tundra surface samples at this location.

Table 3. Average snow depth, density and SWE for all locations visited by ATN personnel in November.

	Sag DO	River DT		water 19	Р	Pad		S-2L TAC)	Pi (NI	etty ngo RCS ite)	Tu	312- ndra face	La	s12- ke face	Mon S (To	RCS Soil itoring Site Solik Imp)
	in	cm	in	cm	in	cm	in	cm	in	Cm	in	cm	in	cm	in	cm
depth	10.3	26.3	5.1	13.1	6.0	15.1	5.6	14.2	6.9	17.6	8.9	22.7	2.7	6.8	9.9	25.2
density	0.2	22	0.	.26	0	.19	0	.24	0	.29	0	.26	0.	30	0	.23
SWE	2.3	5.8	1.3	3.4	1.2	2.9	1.3	3.4	2.0	5.1	2.3	5.9	8.0	2.0	2.3	5.8

On November 18 at Lake L9312 a water level elevation survey was completed along with the installation of two pressure transducers to record water levels on an hourly time-step. Water levels are higher than they were at this time last year due to a dryer than normal Summer/Fall in 2008 (Figure 3). Current water level conditions are more normal than last year when compared to information going back to 2004.

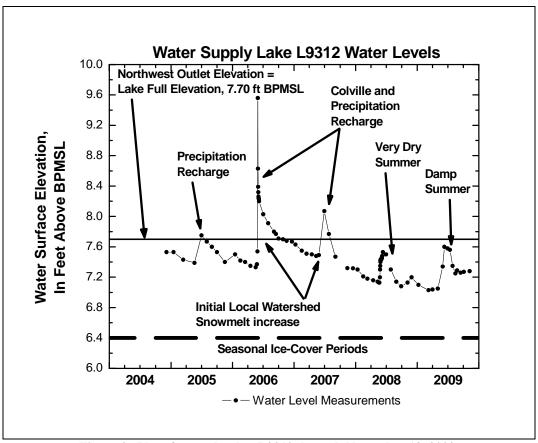


Figure 3. Plot of water level at L9312 through November 18, 2009.

SUMMARY

The November ATN field trip focused on 1) collecting snow depth and density data, and 2) collaboration with DNR personnel on snow data collection efforts at co-located sites. Other accomplishments include the initial installation of a meteorological station at 2L-Pad, the installation of pressure transducers at L9312, and a water level survey with lake ice physical measurements at L9312. Water levels are higher this year at L9312 than the previous year. The collected snow data indicate that snow depths are greater in the southern area of the Central North Slope and lesser towards the Coast. In an east-west direction depths are greater to the west. Data collected compares well between that collected by the ATN project and DNR. Average snow depths are below the minimum 6 in (15 cm) for tundra travel operations. Additional investigations of the timing and amount of snow distributions will help the development of management and predictive tools.

REFERENCES

- Bader, H.R. 2004. Tundra Travel Research Project: Validation Study and Management Recommendations. Betula Consulting. 20 pages.
- Department of Natural Resources. 2009. Winter Off-road Travel Conditions Monitoring Sampling Protocol. Department of Natural Resources, Division of Mining Land and Water. 4 pages.
- Derry, J., Lilly, M.R., and Hilton, K. 2009. A Workplan for Snow Data Collection, Lake Observations and Meteorological Station Maintenance: November 2009. Geo-Watersheds Scientific, Fairbanks, Alaska. 15 pages.

APPENDIX A. SNOW SURVEY FORMS

The following forms report the snow survey information obtained during	ig neid sampling.

Project ID:	ATN Project	Site Location/Lake ID:	ADNR 2L-P	ad
Survey Purpose:	Determine Snow Depth and SWE	Date: 11/17/2009	Time:	14:00

Location Description:		d between 2L- nd DNR meas		ad, near soil thermistors. GV	VS measures to	right (as looking at bore tube		
Survey objective:		snow survey s management	ite with DNR sa	Weather Cold, light conditions good Observations:				
Latitude:	N 70° 11.48	1'	Longitude:	W 150° 19.397'	Datum:	NAD83		
Elevation:	112 ft		Elevation Datum:	NGVD29	Reference Markers:	Just northeast of weather station		
Drainage Basin:	Miluveach R	iver	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra		
Slope Angle:	Flat		Access Notes:	Truck	Other:	Snow pack was fairly uniform some slabbing		
Snow Depth I	Probe Type:		T-Handle Pr	obe	Snow-Survey Team Names:			
Snow Tube Type: Adirondack S			Snow Tube		Jeff Derry, Brent Sheets			

Snow Course Depths (cm)

	1	2	3	4	5
1	12.0	12.0	10.0	11.0	11.0
2	11.0	12.0	19.0	14.0	12.0
3	11.0	8.0	11.0	12.0	10.0
4	12.0	25.0	17.0	23.0	11.0
5	10.0	17.5	16.0	25.0	10.0
6	12.0	14.0	12.0	20.0	10.0
7	17.0	12.0	17.0	15.0	14.0
8	16.0	18.0	13.0	16.0	14.0
9	17.0	14.0	16.0	16.0	20.0
10	12.0	11.0	12.0	15.5	13.0

	(cm)
Average snow depth =	14.2
Maximum snow depth =	25.0
Minimum snow depth =	8.0
Standard variation =	3.9
	(inches)
Average snow depth =	5.6
· .	5.0
Maximum snow depth =	9.8
Maximum snow depth = Minimum snow depth =	

Standard variation = 1.5

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
V4	14	115.4	499.8	0.23	
V3	13	123.1	464.1	0.27	
V2	12	110.0	428.4	0.26	
V1	17	149.2	606.9	0.25	
V5	12	79.2	428.4	0.18	

Average Density = **0.237**

Average Snow Water Equivalent (SWE) = 3.4 cm H2O

Average Snow Water Equivalent = 1.32 inches H2O

Average Snow Water Equivalent = 0.11 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Derry
Data QA/QC by: Michael Lilly
Date: 11/19/09
Date: 11/19/09

Project ID:	ATN Project	Site Location/Lake ID:	ocation/Lake ID: ADNR 2P-Pad	
Survey Purpose:	Determine Snow Depth and SWE	Date: 11/17/2009	Time: 13	:00

Location Description:	West of road to 2P-Pac from road) and DNR m	'	, North of soil thermistors. (GWS measures	to right (as looking at bore tube		
Survey objective:	Co-located snow survey site with DNR sampling site, tundra travel studies and management			Weather Observation	Weather Cold, light outside Observations:		
Latitude:	N 70° 03.853'	Longitude:	W 150° 26.779'	Datum:	NAD83		
Elevation:	200 ft	Elevation Datum:	NGVD29	Reference Markers:	none		
Drainage Basin:	Kachemach River	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra		
Slope Angle:	Flat	Access Notes:	Truck	Other:	Snowpack uniform to ground, some slabbing		
Snow Depth	Snow Depth Probe Type: T-Handle Probe		Snow-Surve	y Team Names:			
Snow Tube T	ype: Adironda	ack Snow Tube		Jeff Derry, B	rent Sheets		

Snow Course Depths (cm)

	1	2	3	4	5
1	12.5	9.5	11.0	11.0	14.0
2	11.5	15.5	7.0	18.0	17.0
3	10.0	15.0	14.5	6.5	5.0
4	14.0	15.0	8.5	11.0	13.0
5	12.5	9.5	17.5	13.0	13.0
6	7.0	11.0	16.5	10.0	14.0
7	9.0	19.0	8.0	25.5	19.5
8	13.5	6.5	8.0	22.5	13.0
9	9.0	13.0	19.0	22.0	10.5
10	19.0	13.0	13.0	16.5	10.5

Average snow depth = _	13.1
Maximum snow depth = _	25.5
Minimum snow depth = _	5.0
Standard variation =	4.5
	(inches)
Average snow depth = _	(inches) 5.1
Average snow depth = _ Maximum snow depth = _	,
· -	5.1

(cm)

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
74			,		(0)
Z4	10	65.5	357.0	0.18	
Z3	19	190.8	678.3	0.28	
Z1	16	173.3	571.2	0.30	
Z5	17	193.7	606.9	0.32	
Z2	13	93.5	464.1	0.20	

Average Density = **0.258**

Average Snow Water Equivalent (SWE) = 3.4 cm H2O

Average Snow Water Equivalent = 1.33 inches H2O

Average Snow Water Equivalent = 0.11 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Derry
Data QA/QC by: Michael Lilly
Date: 11/19/09
Date: 11/19/09

Project ID:	ATN Project	Site Location/Lake ID:	Betty Pingo	
Survey Purpose:	Determine Snow Depth and SWE	Date: 11/17/2009	Time:	13:00

1	IN 107		. 1 1	00.1.1		(1 : : : 0 - 1 1 -
Location Description:	Vertical snow	000	ured, 0 readin			of beginning is flagged rebar. 8. Wyoming Gauge = 31 1/8",
Survey objective:				Weather Observations	Cold, Dark s:	
Latitude:	N70°16.772'		Longitude:	W148°53.741'	Datum:	NAD83
Elevation:	34 ft.		Elevation Datum:	NVGD27	Reference Markers:	Re-bar and lathe
Drainage Basin:	Kuparuk Riv	er	Slope Direction:	Flat	Vegetation Type:	Lowland Moist Sedge-Shrub Tundra
Slope Angle:	Flat		Access Notes:	Truck	Other:	Hard Crust on most of snowpack
Snow Depth	,,		T-Handle Pr	obe	Snow-Surve	y Team Names:
Snow Tube T	уре:	Adirondack S	Snow Tube		Jeff Derry, M	like Lilly

Snow Course Depths (cm)

	1	2	3	4	5
1	39.0	11.0	20.0	10.0	22.0
2	13.0	13.0	22.0	12.0	18.0
3	11.0	17.0	28.0	19.0	9.0
4	14.0	20.0	8.0	17.0	19.0
5	13.0	23.0	10.0	10.0	7.0
6	14.0	24.0	11.0	37.0	6.0
7	13.0	20.0	13.0	20.0	18.0
8	12.0	19.0	13.0	23.0	34.0
9	15.0	20.0	8.0	25.0	36.0
10	16.0	14.0	13.0	27.0	26.0

Average snow depth =	17.6
Maximum snow depth =	39.0
Minimum snow depth =	6.0
Standard variation =	7.8
	(inches)
Average snow depth =	(inches) 6.9
Average snow depth = Maximum snow depth =	,
· -	6.9

(cm)

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
zoe1	50	672.4	1785.0	0.38	
zoe4	15	101.5	535.5	0.19	
zoe5	22	202.6	785.4	0.26	
zoe3	26	319.5	928.2	0.34	
zoe2	24	230.8	856.8	0.27	

Average Density = **0.288**

Average Snow Water Equivalent (SWE) = 5.1 cm H2O

Average Snow Water Equivalent = 2.00 inches H2O

Average Snow Water Equivalent = 0.17 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Derry
Data QA/QC by: Michael Lilly
Date: 11/23/09

Project ID:	ATN	Site Location/Lake ID:	L9312 - Lake Surface	
Survey Purpose:	Determine snow depth/SWE	Date: 11/19/2009	Time: 9:15	

Location Description:	On lake surface ~150 yards from L9312 pumphouse.					
Survey objective:	Determine snow depth and density for application to lake recharge studies, and tundra travel management.				Weather Observation	Dark, cold s:
Latitude:	N 70° 20.008'		Longitude:	W 150° 57.083'	Datum:	NAD 83
Elevation:	7 ft		Elevation Datum:	BPMSL	Reference Markers:	None, Ice surface
Drainage Basin:	Colville Bas	sin	Slope Direction:	Flat	Vegetation Type:	None, Ice surface
Slope Angle:	Flat		Access Notes:	snowmobile	Other:	Dense snow, drifting, patches of clear ice
Snow Depth	Probe Type:		T- probe		Snow-Surve	y Team Names:
Snow Tube T	уре:	Adirondac	k Snow Tube		Jeff Derry, J	ack (LCMF)

Snow Course Depths (cm)

	1	2	3	4	5
1	3.0	10.0	1.0	8.0	8.0
2	1.0	13.0	0.5	10.0	10.0
3	1.0	11.0	0.5	11.0	8.0
4	1.0	7.0	7.0	14.0	8.0
5	0.5	7.0	18.0	15.0	3.0
6	4.0	6.0	17.0	13.0	2.0
7	4.0	3.0	15.0	12.0	2.0
8	3.0	2.0	14.0	8.0	0.5
9	5.0	0.5	12.0	12.0	0.5
10	7.0	0.5	10.0	8.0	0.5

Average snow depth =	6.8
Maximum snow depth =	18.0
Minimum snow depth =	0.5
Standard variation =	5.2
	(inches)
Average snow depth =	(inches) 2.7
Average snow depth = Maximum snow depth =	,
	2.7
Maximum snow depth =	2.7 7.1

(cm)

Snow Sample Depths and Weights

Bag #	Snow Depth (cm)	Weight (g)	Volume (cm^3)	Density (g/cm^3)	Organic Plug (cm)
E5	5	43.4	178.5	0.24	
E1	10	147.4	357.0	0.41	
E3	26	341.8	928.2	0.37	
E4	16	202.0	571.2	0.35	
E2	5	21.0	178.5	0.12	
		_			

Average Density = **0.299**

Average Snow Water Equivalent (SWE) = 2.0 cm H2O

Average Snow Water Equivalent = 0.80 inches H2O

Average Snow Water Equivalent = 0.07 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Derry
Data QA/QC by: Michael Lilly
Date: 11/19/09
Date: 11/19/09

Project ID:	ATN	Site Location/Lake ID:	L9312 - Tundra	
Survey Purpose:	Determine snow depth/SWE	Date: 11/19/2009	Time: 9:00	,

Location Description:	On tundra	on staked cou	urse, adjacent an	d north of L9312 weather sta	ation.	
Survey objective:		Determine snow depth and density for application to lake recharge studies, and tundra travel management.				Dark, cold s:
Latitude:	N 70° 19.9	95'	Longitude:	W 150° 56.918'	Datum:	NAD 83
Elevation:	7 ft		Elevation Datum:	BPMSL	Reference Markers:	Orange stakes
Drainage Basin:	Colville Riv	/er	Slope Direction:	Flat	Vegetation Type:	Lowland Wet Sedge Tundra
Slope Angle:	Flat		Access Notes:	snowmobile	Other:	Snow pack was fairly uniform, some slabbing
Snow Depth	Probe Type:		T-probe		Snow-Surve	y Team Names:
Snow Tube T	ype:	Adirondad	ck Snow Tube		Jeff Derry, J	ack (LCMF)

Snow Course Depths (cm)

	1	2	3	4	5
1	16.0	10.0	21.0	19.0	21.0
2	22.0	9.0	18.0	18.0	35.0
3	26.0	9.0	19.0	14.0	58.0
4	21.0	15.0	17.0	14.0	56.0
5	47.0	18.0	10.0	10.0	51.0
6	22.0	20.0	19.0	21.0	45.0
7	14.0	29.0	11.0	17.0	47.0
8	15.0	27.0	11.0	11.0	38.0
9	13.0	24.0	29.0	13.0	34.0
10	12.0	17.0	21.0	17.0	32.0

	(cm)
Average snow depth = _	22.7
Maximum snow depth = _	58.0
Minimum snow depth = _	9.0
Standard variation =	12.6
	(inches)
Average snow depth =	8.9

Average snow depth =	8.9
Maximum snow depth =	22.8
Minimum snow depth =	3.5
Standard variation =	5.0
-	

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
D5	18	197.3	642.6	0.31	
D1	16	110.8	571.2	0.19	
D2	14	93.4	499.8	0.19	
D3	22	205.1	785.4	0.26	
D4	55	671.9	1963.5	0.34	

Average Density = **0.258**

Average Snow Water Equivalent (SWE) = 5.9 cm H2O

Average Snow Water Equivalent = 2.30 inches H2O

Average Snow Water Equivalent = 0.19 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Derry
Data QA/QC by: Michael Lilly
Date: 11/19/09
Date: 11/19/09

Project ID:	ATN Project	Site Location/Lake ID:	NRCS Soil Site/T	oolik
Survey Purpose:	Determine Snow Depth and SWE	Date: 11/21/2009	Time: 12	::00

Location Description:	Near Tollik Ca	amp and Toolik	k Lake. Adjad	cent and south and west	of NRCS long-term	Climate Station		
Survey objective:	SWE and tun	dra travel stud	ra travel studies and management			Weather Cold, Light, Calm Observations:		
Latitude:	N 68 37.366		Longitude:	W 149 36,598	Datum:	NAD 83		
Elevation:	2500 ft.		Elevation Datum:	NGVD27	Reference Markers:	NRCS Station		
Drainage Basin:	Toolik Lake		Slope Direction:	East	Vegetation Type:	Upland Shrubby Tussuck Tundra		
Slope Angle:	~10 degrees		Access Notes:	Walk from Toolik	Other:	Uniform accumulation		
Snow Depth Probe Type:		T-Handle Probe		Snow-Surve	y Team Names:			
Snow Tube Type: Adirondack S		now Tube		Jeff Derry, M	like Lilly			

Snow Course Depths (cm)

	1	2	3	4	5
1	31.0	23.0	27.0	32.0	18.0
2	22.0	30.0	23.0	39.0	22.0
3	25.0	26.0	24.0	36.0	34.0
4	21.0	15.0	27.0	31.0	21.0
5	25.0	23.0	23.0	24.0	30.0
6	24.0	17.0	22.0	30.0	21.0
7	25.0	26.0	28.0	21.0	21.0
8	24.0	36.0	29.0	23.0	29.0
9	26.0	13.0	15.0	16.0	25.0
10	22.0	27.0	27.0	31.0	28.0

Average snow depth = _	25.2
Maximum snow depth =	39.0
Minimum snow depth =	13.0
Standard variation =	5.5
	(inches)
Average snow depth = _	(inches) 9.9
Average snow depth = Maximum snow depth =	,
· -	9.9
Maximum snow depth =	9.9 15.4

(cm)

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
Z2	23	193.1	821.1	0.24	
Z3	24	209.1	856.8	0.24	
Z1	28	262.0	999.6	0.26	
Z 5	21	166.3	749.7	0.22	
Z4	21	143.6	749.7	0.19	

Average Density = **0.231**

Average Snow Water Equivalent (SWE) = 5.8 cm H2O

Average Snow Water Equivalent = 2.29 inches H2O

Average Snow Water Equivalent = 0.19 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Derry
Data QA/QC by: Michael Lilly
Date: 11/23/09

Project ID:	ATN Project	Site Location/Lake ID:	Sag River	DOT	
Survey Purpose:	Determine Snow Depth and SWE	Date: 11/21/2009	Time:	13:00	

Location Description:	On Road to DOT gar stays left.	age. Near soil thern	nistor bore hole. GW-S sta	ys to right (as loo	oking at bore tube) and DNR			
Survey objective:	SWE and Tundra Tra sampling site)	avel (Co-located sno	w survey site with DNR	Weather Observation	Cold, Light, Calm s:			
Latitude:	N 68 45.686	Longitude:	W 148 52.746	Datum:	NAD 83			
Elevation:	1640 ft.	Elevation Datum:	NGVD29	Reference Markers:	Soil Thermistor bore hole			
Drainage Basin:	Kuparuk	Slope Direction:	Flat	Vegetation Type:	Upland Tussock Tundra			
Slope Angle:	Flat	Access Notes:	Truck	Other:				
Snow Depth I	Probe Type:	T-Handle Pr	obe	Snow-Survey Team Names:				
Snow Tube T	ype: Adiron	dack Snow Tube		Jeff Derry, Mike Lilly				

Snow Course Depths (cm)

	1	2	3	4	5
1	23.0	16.0	21.0	25.0	27.0
2	29.0	21.0	28.0	22.0	35.0
3	30.0	20.0	28.0	19.0	33.0
4	26.0	28.0	29.0	18.0	25.0
5	29.0	23.0	23.0	25.0	31.0
6	33.0	26.0	19.0	31.0	31.0
7	27.0	24.0	26.0	40.0	36.0
8	22.0	25.0	26.0	34.0	31.0
9	26.0	27.0	22.0	27.0	22.0
10	26.0	23.0	23.0	23.0	30.0

Average snow depth = _	26.3
Maximum snow depth =	40.0
Minimum snow depth = _	16.0
Standard variation =	4.9
	(inches)
Average snow depth = _	(inches) 10.3
Average snow depth = _ Maximum snow depth = _	,
· <u> </u>	10.3

(cm)

Snow Sample Depths and Weights

Bag #	Snow Depth	Weight	Volume	Density	Organic Plug
	(cm)	(g)	(cm^3)	(g/cm^3)	(cm)
V4	22	175.1	785.4	0.22	
V2	21	166.4	749.7	0.22	
V3	19	163.9	678.3	0.24	
V1	35	221.0	1249.5	0.18	
V5	32	275.8	1142.4	0.24	

Average Density = **0.221**

Average Snow Water Equivalent (SWE) = 5.8 cm H2O

Average Snow Water Equivalent = 2.29 inches H2O

Average Snow Water Equivalent = 0.19 feet H2O

SWE = avg. snow depth*(density snow/density water)

Data entered by: Jeff Derry
Data QA/QC by: Michael Lilly
Date: 11/23/09

APPENDIX B. DNR SNOW DATA

The following table reports snow information obtained by DNR in November.

DNR Data	Fro	m S	oil a	and S	Snov						•				ity,	and	Sno	w W	ater	Equ	ıivaleı	nt
station							Data				_			20							ave	rage
Station								1	Upp	er F	-oot	hills	<u> </u>								in	cm
Slope Mountain																						
depth (in)	11.0	12.0	9.0	8.0	7.0	8.0	12.0	9.0	6.0	8.0	7.0	10.0	9.0	6.0	9.0	9.0	8.0	8.0	6.0	7.0	8.5	21.5
density (g/cm^3)	0.24	0.18																			0.	.21
SWE (in)	1.3	1.2																			1.3	3.2
Sag R. DOT																						
depth (in)	7.0	11.0	10.0	10.0	9.0	10.0	13.0	12.0	7.0	8.0	10.0	10.0	14.0	7.0	14.0	11.0	10.0	10.0	8.0	10.0	10.1	25.5
density (g/cm^3)	0.25	0.22																			0.	23
SWE (in)	2.5	1.4																			2.0	5.0
Pump 3																						
depth (in)	10.0	9.0	11.0	10.0	13.0	11.0	10.0	10.0	12.0	10.0	11.0	12.0	10.0	13.0	10.0	10.0	11.0	11.0	12.0	9.0	10.8	27.3
density (g/cm^3)	0.22	0.23																			0.	22
SWE (in)	2.3	2.6																			2.4	6.1
318 Mile																						
depth (in)	14.0	13.0	11.0	13.0	12.0	8.0	13.0	14.0	14.0	13.0	13.0	13.0	14.0	13.0	14.0	13.0	11.0	15.0	12.0	13.0	12.8	32.5
density (g/cm^3)	0.23	0.21																			0.	22
SWE (in)	2.8	2.7																			2.7	6.9

							Data	Col	lecte	ed No	ven	ber	16 -	20								
station									_		_										ave	rage
Station									Low	er F	oot	hills	3								in	cm
62 Mile																						
depth (in)	8.0	9.0	9.0	6.0	13.0	10.0	7.0	9.0	5.0	12.0	5.0	7.0	11.0	11.0	10.0	7.0	7.0	7.0	11.0	7.0	8.6	21.7
density (g/cm^3)	0.20	0.18																			0.	.19
SWE (in)	1.7	1.4																			1.5	3.9
52 Mile																						
depth (in)	8.0	7.0	10.0	12.0	7.0	12.0	6.0	8.0	12.0	10.0	5.0	5.0	5.0	10.0	8.0	14.0	7.0	9.0	11.0	10.0	8.8	22.4
density (g/cm^3)	0.14	0.16																			0.	.15
SWE (in)	1.6	1.2																			1.4	3.6
30 Mile																						
depth (in)	3.0	3.0	4.0	3.0	3.0	2.0	4.0	4.0	4.0	3.0	3.0	3.0	4.0	3.0	4.0	4.0	4.0	5.0	4.0	2.0	3.5	8.8
density (g/cm^3)	0.18	0.13																			0.	.15
SWE (in)	0.6	0.5																			0.6	1.4
SpurDike 6-20 Mi																						
depth (in)	6.0	8.0	4.0	8.0	8.0	10.0	6.0	8.0	10.0	8.0	6.0	5.0	7.0	7.0	7.0	9.0	5.0	6.0	8.0	6.0	7.1	18.0
density (g/cm^3)	0.28	0.30																			0.	.29
SWE (in)	2.0	1.5																			1.7	4.4
Meltwater 19																						
depth (in)	3.0	4.0	4.0	5.0	5.0	5.0	6.0	4.0	4.0	4.0	4.0	6.0	3.0	6.0	5.0	3.0	6.0	4.0	5.0	4.0	4.5	11.4
density (g/cm^3)	0.15	0.24																			0.	.19
SWE (in)	0.7	1.2																			1.0	2.5

DNR Data	Fro	m S	oil a	nd S	Snov						-				ity,	and	Sno	w W	ater	Equ	ıivale	nt
							Data	Col	lecte	d No	oven	ber	16 -	20							ave	rage
station								Eas	steri	n Co	oast	al A	rea								in	cm
UAF 411 mi																						
depth (in)	4.0	3.0	4.0	5.0	4.0	5.0	4.0	3.0	6.0	3.0	4.0	4.0	5.0	5.0	6.0	5.0	4.0	4.0	6.0	6.0	4.5	11.4
density (g/cm^3)	0.25	0.23																			0.	24
SWE (in)	1.5	1.5																			1.5	3.8
P Pad																						
depth (in)	3.0	4.0	4.0	4.0	4.0	3.0	5.0	4.0	4.0	7.0	4.0	4.0	3.0	4.0	6.0	4.0	4.0	4.0	5.0	6.0	4.3	10.9
density (g/cm^3)	0.20	0.26																			0.	23
SWE (in)	1.0	8.0																			0.9	2.3
T Pad																						
depth (in)	4.0	2.0	4.0	2.0	3.0	5.0	4.0	5.0	4.0	4.0	4.0	5.0	4.0	5.0	5.0	3.0	5.0	1.0	5.0	4.0	3.9	9.9
density (g/cm^3)	0.19	0.40																			0.	30
SWE (in)	0.9	1.8																			1.4	3.5
Term Well A																						
depth (in)	4.0	5.0	3.0	5.0	3.0	2.0	4.0	5.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0	3.0	3.0	3.0	6.0	3.8	9.7
density (g/cm^3)	0.23	0.19																			0.	21
SWE (in)	0.9	0.7																			0.8	2.1
DS 16																						
depth (in)	7.0	7.0	7.0	6.0	5.0	7.0	2.0	7.0	8.0	4.0	7.0	3.0	6.0	6.0	3.0	6.0	4.0	5.0	5.0	3.0	5.4	13.7
density (g/cm^3)	0.50	0.40																			0.	45
SWE (in)	4.0	2.6																			3.3	8.4
ANFO Pad																						
depth (in)	4.0	3.0	3.0	3.0	2.0	4.0	3.0	3.0	2.0	2.0	4.0	2.0	4.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	7.6
density (g/cm^3)	0.47	0.34																			0.	40
SWE (in)	1.4	1.0																			1.2	3.1

																					21/0	rage
station								We	ster	n C	oasi	al A	rea								in	cm
DS-2L (ASTAC)																						OIII
depth (in)	5.0	5.0	5.0	4.0	5.0	4.0	5.0	5.0	5.0	6.0	6.0	5.0	6.0	6.0	6.0	6.0	6.0	5.0	5.0	5.0	5.3	13.3
density (g/cm^3)	0.29	0.13																			0.	21
SWE (in)	1.8	0.8																			1.3	3.2
Palm 2																						
depth (in)	5.0	5.0	4.0	5.0	5.0	6.0	5.0	5.0	5.0	5.0	3.0	5.0	5.0	5.0	5.0	5.0	7.0	4.0	4.0	4.0	4.9	12.3
density (g/cm^3)	0.20	0.22																			0.	21
SWE (in)	8.0	1.3																			1.1	2.7
Ugnu																						
depth (in)	6.0	4.0	3.0	5.0	3.0	5.0	6.0	6.0	5.0	3.0	4.0	4.0	3.0	3.0	4.0	3.0	5.0	3.0	3.0	3.0	4.1	10.3
density (g/cm^3)	0.38	0.17																			0.	28
SWE (in)	1.9	0.7																			1.3	3.3
DS-1J																						
depth (in)	10.0	9.0	5.0	6.0	7.0	9.0	13.0	6.0	6.0	5.0	11.0	7.0	8.0	10.0	5.0	9.0	3.0	5.0	9.0	6.0	7.5	18.9
density (g/cm^3)	0.26	0.32																			0.	29
SWE (in)	1.8	2.7																			2.3	5.7
S Pad																						
depth (in)	4.0	5.0	5.0	6.0	7.0	3.0	5.0	6.0	6.0	6.0	3.0	5.0	6.0	8.0	7.0	4.0	5.0	6.0	7.0	6.0	5.5	14.0
density (g/cm^3)	0.58	0.21																			0.	39
SWE (in)	3.8	0.9																			2.3	6.0

APPENDIX C. L9312 ELEVATION SURVEY FORM

The following form reports the elevation survey information obtained during field sampling.

Arctic Transportation Networks Form F-011: Elevation Survey Form

Project ID:	ATN	Site Loca	cation/Lake ID: L9312		
Survey Purpose:	Water-Level Elevations	Date:	11/18/2009	Time:	17:27

Location:	Lake L9312, lo			ad, survey by	pump hous	e benchmarl	ks. Lake i	ce thickness = 1.58',	
Survey objective:	incesoard = .o	WS Elevation.	Weather Observations:						
Instrument Type:	Leica N	IA720	Instrument ID:	5482372 (G	WS owned)			'	
Rod Type:	Fiberg	lass	Rod ID:	Crane Fil	oer Glass	-27°F, Dark	ζ.		
		Bench Mar	k Information:			Survey Tea	ım Names		
Name	Agency Responsible	Elevation (ft)	Latitude (dd-mm.mmm)	Long (ddd-mn		Lilly,		, Derry	
L9312"P"	СР	11.73	N 70 19.995	W 150					
Station	BS (ft)	HI (ft)	FS (ft)	Elevation (fasl)	Distance (ft)	Horizontal Angle	Vertical Angle	Remarks	
TBM "P"	2.09	13.82	(-3/	11.73	(-9	y		Top of inlet pipe suppor	
ТВМ "О"		13.82	2.36	11.46				Top of inlet pipe support. BM Elev=11.46'	
99-32-59		13.82	0.73	14.55				Top of Pumphouse SE VSM. BM Elev = 14.55	
L9312 WL		13.82	6.56	7.26					
			7	urn on L931	2 WL				
L9312 WL	6.36	13.62		7.26					
99-32-59		13.62	0.93	14.55					
TBM"O"		13.62	2.16	11.46					
TBM"P"		13.62	1.89	11.73				close survey to 0.00'	

Abbreviations: backsight, BS; degrees, dd; feet, ft; feet above mean sea level, fasml; foresight, FS; height of instrument, HI; minutes, mm; seconds, ss; BP Mean Sea Level, BPMSL

APPENDIX D. LAKE ICE PHYSICAL MEASURMENTS

The following form reports physical measurements pertaining to lake ice obtained during field sampling.

Arctic Transportation Networks Project

FORM F-005: WATER-LEVEL MEASUREMENT FORM

Lake or Site ID: L9312 **ABBREVIATIONS** Survey ID Local Number: NAD83 BOI, bottom of ice

Latitude Longitude All measurements in feet, (dd-(dd-Elevation (ft) unless noted mm.mmm) mm.mmm) N 70 19.995 W 150 7.00

Calib, used to calibrate PT IS. ice surface

LB, lake bottom LS, land surface MP, measuring point N/A, not available WS, water surface

Vertical-Datum Corrections, reference survey notes in site folders

Date MP ID MP Elevation (feet above BP Sea Level) 3/26/2004 "P" 11.61 "P" 11.73 (BM elevation adjusted) 1/16/2006

						Ice				
			Snow	Total Depth	Estimated	Thickness	Freeboard			
Date	Time	Method	Depth	IS to LB	Error	(IS to BOI)	(IS to WS)	WS Elevation	IS Elevation	Remarks
11/18/09	17:27	Levels	0.04	10.55	+/- 0.01	1.58'	0.04	7.26		
11/10/09	11.21	Levels	0.04	10.55	+ /- 0.01	1.50	0.04	1.20		
-										

Collected Data Values

Lake-Full Elevation = measured at staff gage or near vertical benchmark after lake outflow ceased following spring snowmelt

Freeboard (FB) = Height of ice level over water level in open hole

Ice Thickness (IT) = Measured distance between top and bottom of ice

Total Depth (TD) = Measured distance from water surface to lake bottom

Estimated Error = Field estimate of water level measurement error

Calculated Values

Ice Surface (IS) Elevation = Water Elevation + Freeboard

Ice Bottom (IB) Elevation = Ice Surface Elevation - Ice Thickness